{"title":"长期施用发酵有机肥可减少塑料大棚农业土壤中尿素氮-15的流失","authors":"Hou Maomao , Tang Songyan , Zhu Qinyuan , Chen Jingnan , Xiao Ying , Jin Qiu , Zhong Fenglin","doi":"10.1016/j.aoas.2023.11.002","DOIUrl":null,"url":null,"abstract":"<div><p>Continuous application of fermented organic fertilizer can improve soil quality, while the performance of nitrogen (N) in the improved soils is rarely investigated. To investigate the fate of applied N in the soils with organic management history, the <sup>15</sup>NH<sub>2</sub>CO<sup>15</sup>NH<sub>2</sub> (<sup>15</sup>N abundance of 19.6 %) was employed as the exogenous N source to conduct an experiment in the Chinese cabbage and tomato rotation system under plastic shed condition. The cultivated soils have received 15-year of effective microorganism (EM) fermented organic fertilizer (EM-OF), N, P, K inorganic fertilizer (NPK-IF) and no fertilizer (No<img>F). The <sup>15</sup>N use by cabbage and tomato, the soil <sup>15</sup>N forms, as well as the <sup>15</sup>N distribution were observed. Results showed that the <sup>15</sup>N use efficiency of cabbage in the EM-OF, NPK-IF and No<img>F soils were 55.1 %, 37.3 % and 26.6 % respectively, showing significant (<em>p</em> ≤ 0.05) differences. The succeeding crop tomato could take up the soil residual <sup>15</sup>N, and the highest <sup>15</sup>N reuse efficiency was 7.1 % that detected in the No<img>F soil. The total <sup>15</sup>N loss (6.0 %) from the rotation system was the lowest in the EM-OF soil, compared to that in the NPK-IF and No<img>F soils. It was concluded that the long-term fermented organic fertilizer applied soils can reduce urea <sup>15</sup>N loss from plastic shed agriculture, mainly through improving the in-season crop <sup>15</sup>N use efficiency.</p></div>","PeriodicalId":54198,"journal":{"name":"Annals of Agricultural Science","volume":"68 2","pages":"Pages 108-117"},"PeriodicalIF":3.5000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S057017832300026X/pdfft?md5=1a200c69d441a55a459b110ea9eb25fc&pid=1-s2.0-S057017832300026X-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Long-term fermented organic fertilizer application reduce urea nitrogen-15 loss from plastic shed agricultural soils\",\"authors\":\"Hou Maomao , Tang Songyan , Zhu Qinyuan , Chen Jingnan , Xiao Ying , Jin Qiu , Zhong Fenglin\",\"doi\":\"10.1016/j.aoas.2023.11.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Continuous application of fermented organic fertilizer can improve soil quality, while the performance of nitrogen (N) in the improved soils is rarely investigated. To investigate the fate of applied N in the soils with organic management history, the <sup>15</sup>NH<sub>2</sub>CO<sup>15</sup>NH<sub>2</sub> (<sup>15</sup>N abundance of 19.6 %) was employed as the exogenous N source to conduct an experiment in the Chinese cabbage and tomato rotation system under plastic shed condition. The cultivated soils have received 15-year of effective microorganism (EM) fermented organic fertilizer (EM-OF), N, P, K inorganic fertilizer (NPK-IF) and no fertilizer (No<img>F). The <sup>15</sup>N use by cabbage and tomato, the soil <sup>15</sup>N forms, as well as the <sup>15</sup>N distribution were observed. Results showed that the <sup>15</sup>N use efficiency of cabbage in the EM-OF, NPK-IF and No<img>F soils were 55.1 %, 37.3 % and 26.6 % respectively, showing significant (<em>p</em> ≤ 0.05) differences. The succeeding crop tomato could take up the soil residual <sup>15</sup>N, and the highest <sup>15</sup>N reuse efficiency was 7.1 % that detected in the No<img>F soil. The total <sup>15</sup>N loss (6.0 %) from the rotation system was the lowest in the EM-OF soil, compared to that in the NPK-IF and No<img>F soils. It was concluded that the long-term fermented organic fertilizer applied soils can reduce urea <sup>15</sup>N loss from plastic shed agriculture, mainly through improving the in-season crop <sup>15</sup>N use efficiency.</p></div>\",\"PeriodicalId\":54198,\"journal\":{\"name\":\"Annals of Agricultural Science\",\"volume\":\"68 2\",\"pages\":\"Pages 108-117\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2023-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S057017832300026X/pdfft?md5=1a200c69d441a55a459b110ea9eb25fc&pid=1-s2.0-S057017832300026X-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Agricultural Science\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S057017832300026X\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRICULTURE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Agricultural Science","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S057017832300026X","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
Long-term fermented organic fertilizer application reduce urea nitrogen-15 loss from plastic shed agricultural soils
Continuous application of fermented organic fertilizer can improve soil quality, while the performance of nitrogen (N) in the improved soils is rarely investigated. To investigate the fate of applied N in the soils with organic management history, the 15NH2CO15NH2 (15N abundance of 19.6 %) was employed as the exogenous N source to conduct an experiment in the Chinese cabbage and tomato rotation system under plastic shed condition. The cultivated soils have received 15-year of effective microorganism (EM) fermented organic fertilizer (EM-OF), N, P, K inorganic fertilizer (NPK-IF) and no fertilizer (NoF). The 15N use by cabbage and tomato, the soil 15N forms, as well as the 15N distribution were observed. Results showed that the 15N use efficiency of cabbage in the EM-OF, NPK-IF and NoF soils were 55.1 %, 37.3 % and 26.6 % respectively, showing significant (p ≤ 0.05) differences. The succeeding crop tomato could take up the soil residual 15N, and the highest 15N reuse efficiency was 7.1 % that detected in the NoF soil. The total 15N loss (6.0 %) from the rotation system was the lowest in the EM-OF soil, compared to that in the NPK-IF and NoF soils. It was concluded that the long-term fermented organic fertilizer applied soils can reduce urea 15N loss from plastic shed agriculture, mainly through improving the in-season crop 15N use efficiency.
期刊介绍:
Annals of Agricultural Sciences (AOAS) is the official journal of Faculty of Agriculture, Ain Shams University. AOAS is an open access peer-reviewed journal publishing original research articles and review articles on experimental and modelling research at laboratory, field, farm, landscape, and industrial levels. AOAS aims to maximize the quality of the agricultural sector across the globe with emphasis on the Arabian countries by focusing on publishing the high-quality applicable researches, in addition to the new methods and frontiers leading to maximizing the quality and quantity of both plant and animal yield and final products.