Qiqi Tao , Marie Naveau , Alexis Tantet , Jordi Badosa , Philippe Drobinski
{"title":"气候变化和空调情景下法国居民用电量的次区域变异性","authors":"Qiqi Tao , Marie Naveau , Alexis Tantet , Jordi Badosa , Philippe Drobinski","doi":"10.1016/j.cliser.2023.100426","DOIUrl":null,"url":null,"abstract":"<div><p>The residential sector is important for the energy transition to combat global warming. Due to the geographical variability of socio-economic factors, the highly dependent residential electricity consumption (REC) should be studied locally. This study aims to project future French REC considering climate change and air-conditioning (AC) scenarios and to quantify its spatial variability. For this purpose, a linear temperature sensitivity model fitted by annual observed electricity consumption data and historical temperature is applied at an intra-regional scale. Future temperature-sensitive REC is computed by applying the model to temperature projections under the climate change pathway RCP8.5. Three AC scenarios are considered: (1) A 100% AC rate scenario assuming that any region partially equipped with AC systems nowadays will have all its households equipped with AC, but local temperature sensitivity will no longer progress; (2) A gradual spreading scenario mimicking “do like my neighbor” behavior; (3) A combination of the two scenarios. Increasing temperatures lead to an overall REC decrease (−8 TWh by 2040 and down to −20 TWh by 2100) with significant spatial variability, which had never been quantified and mapped due to a lack of suited methodology and limited available data at the finest scale. The evolution of REC is modulated by the evolution of cooling needs and the deployment of AC systems to meet those needs. In the first 2 AC scenarios, the decrease of REC due to climate change could be totally offset in the South of France, which would then display an increase in REC. When the 2 AC scenarios are combined, an increase in REC could be seen over the whole country. The most extreme AC scenario shows a potential REC rise due to AC usage by 2% by 2040 and even 32% by 2100, which could be canceled by increasing the cooling setpoint up to 26–27 °C.</p></div>","PeriodicalId":51332,"journal":{"name":"Climate Services","volume":"33 ","pages":"Article 100426"},"PeriodicalIF":4.0000,"publicationDate":"2023-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2405880723000882/pdfft?md5=5c2bfa8c212a50250d2a17e1f0918868&pid=1-s2.0-S2405880723000882-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Sub-regional variability of residential electricity consumption under climate change and air-conditioning scenarios in France\",\"authors\":\"Qiqi Tao , Marie Naveau , Alexis Tantet , Jordi Badosa , Philippe Drobinski\",\"doi\":\"10.1016/j.cliser.2023.100426\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The residential sector is important for the energy transition to combat global warming. Due to the geographical variability of socio-economic factors, the highly dependent residential electricity consumption (REC) should be studied locally. This study aims to project future French REC considering climate change and air-conditioning (AC) scenarios and to quantify its spatial variability. For this purpose, a linear temperature sensitivity model fitted by annual observed electricity consumption data and historical temperature is applied at an intra-regional scale. Future temperature-sensitive REC is computed by applying the model to temperature projections under the climate change pathway RCP8.5. Three AC scenarios are considered: (1) A 100% AC rate scenario assuming that any region partially equipped with AC systems nowadays will have all its households equipped with AC, but local temperature sensitivity will no longer progress; (2) A gradual spreading scenario mimicking “do like my neighbor” behavior; (3) A combination of the two scenarios. Increasing temperatures lead to an overall REC decrease (−8 TWh by 2040 and down to −20 TWh by 2100) with significant spatial variability, which had never been quantified and mapped due to a lack of suited methodology and limited available data at the finest scale. The evolution of REC is modulated by the evolution of cooling needs and the deployment of AC systems to meet those needs. In the first 2 AC scenarios, the decrease of REC due to climate change could be totally offset in the South of France, which would then display an increase in REC. When the 2 AC scenarios are combined, an increase in REC could be seen over the whole country. The most extreme AC scenario shows a potential REC rise due to AC usage by 2% by 2040 and even 32% by 2100, which could be canceled by increasing the cooling setpoint up to 26–27 °C.</p></div>\",\"PeriodicalId\":51332,\"journal\":{\"name\":\"Climate Services\",\"volume\":\"33 \",\"pages\":\"Article 100426\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2023-12-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2405880723000882/pdfft?md5=5c2bfa8c212a50250d2a17e1f0918868&pid=1-s2.0-S2405880723000882-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Climate Services\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2405880723000882\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Climate Services","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405880723000882","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Sub-regional variability of residential electricity consumption under climate change and air-conditioning scenarios in France
The residential sector is important for the energy transition to combat global warming. Due to the geographical variability of socio-economic factors, the highly dependent residential electricity consumption (REC) should be studied locally. This study aims to project future French REC considering climate change and air-conditioning (AC) scenarios and to quantify its spatial variability. For this purpose, a linear temperature sensitivity model fitted by annual observed electricity consumption data and historical temperature is applied at an intra-regional scale. Future temperature-sensitive REC is computed by applying the model to temperature projections under the climate change pathway RCP8.5. Three AC scenarios are considered: (1) A 100% AC rate scenario assuming that any region partially equipped with AC systems nowadays will have all its households equipped with AC, but local temperature sensitivity will no longer progress; (2) A gradual spreading scenario mimicking “do like my neighbor” behavior; (3) A combination of the two scenarios. Increasing temperatures lead to an overall REC decrease (−8 TWh by 2040 and down to −20 TWh by 2100) with significant spatial variability, which had never been quantified and mapped due to a lack of suited methodology and limited available data at the finest scale. The evolution of REC is modulated by the evolution of cooling needs and the deployment of AC systems to meet those needs. In the first 2 AC scenarios, the decrease of REC due to climate change could be totally offset in the South of France, which would then display an increase in REC. When the 2 AC scenarios are combined, an increase in REC could be seen over the whole country. The most extreme AC scenario shows a potential REC rise due to AC usage by 2% by 2040 and even 32% by 2100, which could be canceled by increasing the cooling setpoint up to 26–27 °C.
期刊介绍:
The journal Climate Services publishes research with a focus on science-based and user-specific climate information underpinning climate services, ultimately to assist society to adapt to climate change. Climate Services brings science and practice closer together. The journal addresses both researchers in the field of climate service research, and stakeholders and practitioners interested in or already applying climate services. It serves as a means of communication, dialogue and exchange between researchers and stakeholders. Climate services pioneers novel research areas that directly refer to how climate information can be applied in methodologies and tools for adaptation to climate change. It publishes best practice examples, case studies as well as theories, methods and data analysis with a clear connection to climate services. The focus of the published work is often multi-disciplinary, case-specific, tailored to specific sectors and strongly application-oriented. To offer a suitable outlet for such studies, Climate Services journal introduced a new section in the research article type. The research article contains a classical scientific part as well as a section with easily understandable practical implications for policy makers and practitioners. The journal''s focus is on the use and usability of climate information for adaptation purposes underpinning climate services.