Le Zhao, Ruifeng Pei, Yiren Ding, Zhan Su, Deqiang Li, Shuo Zhu, Lu Xu, Hongying Zhao, Wuyuan Zhou
{"title":"肿瘤细胞来源的细胞外囊泡通过激活STAT1/PD-L1轴促进肝细胞癌的免疫逃逸","authors":"Le Zhao, Ruifeng Pei, Yiren Ding, Zhan Su, Deqiang Li, Shuo Zhu, Lu Xu, Hongying Zhao, Wuyuan Zhou","doi":"10.1097/CJI.0000000000000496","DOIUrl":null,"url":null,"abstract":"<p><p>Emerging evidence has validated that extracellular vesicles (EVs) regulate hepatocellular carcinoma (HCC) progression, while its role in HCC immune escape remains to be elucidated. This study investigates the role of EVs-encapsulated lysyl oxidase like-4 (LOXL4) derived from tumor cells in HCC immune escape. HCC-related microarray data sets GSE36376 and GSE87630 were obtained for differential analysis, followed by identifying the essential genes related to the prognosis of HCC patients. Bone marrow-derived macrophages were treated with EVs derived from mouse Hepa 1-6 cells and cocultured with CD8 + T cells to observe the CD8 + T-cell activity. At last, a mouse HCC orthotopic xenograft model was constructed to verify the effects of HCC cell-derived EVs on the immune escape of HCC cells and tumorigenicity in vivo by delivering LOXL4. It was found that ACAT1, C4BPA, EHHADH, and LOXL4 may be the essential genes related to the prognosis of HCC patients. On the basis of the TIMER database, there was a close correlation between LOXL4 and macrophage infiltration in HCC. Besides, STAT1 was closely related to LOXL4. In vitro experiments demonstrated that LOXL4 could induce programmed death-ligand 1 expression in macrophages and immunosuppression by activating STAT1. In vivo experiments also verified that HCC cell-derived EVs promoted the immune escape of HCC cells and tumorigenicity by delivering LOXL4. LOXL4 was delivered into macrophages via EVs to induce programmed death-ligand 1 by activating STAT1 and inhibiting the killing ability of CD8 + T cells to HCC cells, thus promoting immune escape in HCC.</p>","PeriodicalId":15996,"journal":{"name":"Journal of Immunotherapy","volume":" ","pages":"64-76"},"PeriodicalIF":3.2000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"LOXL4 Shuttled by Tumor Cells-derived Extracellular Vesicles Promotes Immune Escape in Hepatocellular Carcinoma by Activating the STAT1/PD-L1 Axis.\",\"authors\":\"Le Zhao, Ruifeng Pei, Yiren Ding, Zhan Su, Deqiang Li, Shuo Zhu, Lu Xu, Hongying Zhao, Wuyuan Zhou\",\"doi\":\"10.1097/CJI.0000000000000496\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Emerging evidence has validated that extracellular vesicles (EVs) regulate hepatocellular carcinoma (HCC) progression, while its role in HCC immune escape remains to be elucidated. This study investigates the role of EVs-encapsulated lysyl oxidase like-4 (LOXL4) derived from tumor cells in HCC immune escape. HCC-related microarray data sets GSE36376 and GSE87630 were obtained for differential analysis, followed by identifying the essential genes related to the prognosis of HCC patients. Bone marrow-derived macrophages were treated with EVs derived from mouse Hepa 1-6 cells and cocultured with CD8 + T cells to observe the CD8 + T-cell activity. At last, a mouse HCC orthotopic xenograft model was constructed to verify the effects of HCC cell-derived EVs on the immune escape of HCC cells and tumorigenicity in vivo by delivering LOXL4. It was found that ACAT1, C4BPA, EHHADH, and LOXL4 may be the essential genes related to the prognosis of HCC patients. On the basis of the TIMER database, there was a close correlation between LOXL4 and macrophage infiltration in HCC. Besides, STAT1 was closely related to LOXL4. In vitro experiments demonstrated that LOXL4 could induce programmed death-ligand 1 expression in macrophages and immunosuppression by activating STAT1. In vivo experiments also verified that HCC cell-derived EVs promoted the immune escape of HCC cells and tumorigenicity by delivering LOXL4. LOXL4 was delivered into macrophages via EVs to induce programmed death-ligand 1 by activating STAT1 and inhibiting the killing ability of CD8 + T cells to HCC cells, thus promoting immune escape in HCC.</p>\",\"PeriodicalId\":15996,\"journal\":{\"name\":\"Journal of Immunotherapy\",\"volume\":\" \",\"pages\":\"64-76\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Immunotherapy\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1097/CJI.0000000000000496\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/12/4 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Immunotherapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/CJI.0000000000000496","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/12/4 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
LOXL4 Shuttled by Tumor Cells-derived Extracellular Vesicles Promotes Immune Escape in Hepatocellular Carcinoma by Activating the STAT1/PD-L1 Axis.
Emerging evidence has validated that extracellular vesicles (EVs) regulate hepatocellular carcinoma (HCC) progression, while its role in HCC immune escape remains to be elucidated. This study investigates the role of EVs-encapsulated lysyl oxidase like-4 (LOXL4) derived from tumor cells in HCC immune escape. HCC-related microarray data sets GSE36376 and GSE87630 were obtained for differential analysis, followed by identifying the essential genes related to the prognosis of HCC patients. Bone marrow-derived macrophages were treated with EVs derived from mouse Hepa 1-6 cells and cocultured with CD8 + T cells to observe the CD8 + T-cell activity. At last, a mouse HCC orthotopic xenograft model was constructed to verify the effects of HCC cell-derived EVs on the immune escape of HCC cells and tumorigenicity in vivo by delivering LOXL4. It was found that ACAT1, C4BPA, EHHADH, and LOXL4 may be the essential genes related to the prognosis of HCC patients. On the basis of the TIMER database, there was a close correlation between LOXL4 and macrophage infiltration in HCC. Besides, STAT1 was closely related to LOXL4. In vitro experiments demonstrated that LOXL4 could induce programmed death-ligand 1 expression in macrophages and immunosuppression by activating STAT1. In vivo experiments also verified that HCC cell-derived EVs promoted the immune escape of HCC cells and tumorigenicity by delivering LOXL4. LOXL4 was delivered into macrophages via EVs to induce programmed death-ligand 1 by activating STAT1 and inhibiting the killing ability of CD8 + T cells to HCC cells, thus promoting immune escape in HCC.
期刊介绍:
Journal of Immunotherapy features rapid publication of articles on immunomodulators, lymphokines, antibodies, cells, and cell products in cancer biology and therapy. Laboratory and preclinical studies, as well as investigative clinical reports, are presented. The journal emphasizes basic mechanisms and methods for the rapid transfer of technology from the laboratory to the clinic. JIT contains full-length articles, review articles, and short communications.