Sarah Commodore, Carolyn Damilola Ekpruke, Dustin Rousselle, Rachel Alford, Maksat Babayev, Shikha Sharma, Aaron Buechlein, Douglas B Rusch, Patricia Silveyra
{"title":"小鼠变应性炎症模型中肺促炎microRNA和细胞因子表达:性染色体补体和性腺激素的作用","authors":"Sarah Commodore, Carolyn Damilola Ekpruke, Dustin Rousselle, Rachel Alford, Maksat Babayev, Shikha Sharma, Aaron Buechlein, Douglas B Rusch, Patricia Silveyra","doi":"10.1152/physiolgenomics.00049.2023","DOIUrl":null,"url":null,"abstract":"<p><p>Epigenetic alterations such as dysregulation of miRNAs have been reported to play important roles in interactions between genetic and environmental factors. In this study, we tested the hypothesis that induction of lung inflammation by inhaled allergens triggers a sex-specific miRNA regulation that is dependent on chromosome complement and hormonal milieu. We challenged the four core genotypes (FCGs) model through intranasal sensitization with a house dust mite (HDM) solution (or PBS as a control) for 5 wk. The FCG model allows four combinations of gonads and sex chromosomes: <i>1</i>) XX mice with ovaries (XXF), <i>2</i>) XY mice with testes (XYM), <i>3</i>) XX mice with testes (XXM), and <i>4</i>) XY mice with ovaries (XYF). Following the challenge (<i>n</i> = 5-7/group), we assessed the expression of 84 inflammatory miRNAs in lung tissue using a PCR array and cytokine levels in bronchoalveolar lavage fluid (BAL) by a multiplex protein assay (<i>n</i> = 4-7 animals/group). Our results showed higher levels of the chemokine KC (an Il-8 homolog) and IL-7 in BAL from XYF mice challenged with HDM. In addition, IL-17A was significantly higher in BAL from both XXF and XYF mice. A three-way interaction among treatment, gonads, and sex chromosome revealed 60 of 64 miRNAs that differed in expression depending on genotype; XXF, XXM, XYF, and XYM mice had 45, 32, 4, and 52 differentially expressed miRNAs, respectively. Regulatory networks of miRNAs identified in this study were implicated in pathways associated with asthma. Female gonadal hormonal effects may alter miRNA expression and contribute to the higher susceptibility of females to asthma.<b>NEW & NOTEWORTHY</b> miRNAs play important roles in regulating gene and environmental interactions. However, their role in mediating sex differences in allergic responses and lung diseases has not been elucidated. Our study used a targeted omics approach to characterize the contributions of gonadal hormones and chromosomal components to lung responses to an allergen challenge. Our results point to the influence of sex hormones in miRNA expression and proinflammatory markers in allergic airway inflammation.</p>","PeriodicalId":20129,"journal":{"name":"Physiological genomics","volume":" ","pages":"179-193"},"PeriodicalIF":2.5000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11281810/pdf/","citationCount":"0","resultStr":"{\"title\":\"Lung proinflammatory microRNA and cytokine expression in a mouse model of allergic inflammation: role of sex chromosome complement and gonadal hormones.\",\"authors\":\"Sarah Commodore, Carolyn Damilola Ekpruke, Dustin Rousselle, Rachel Alford, Maksat Babayev, Shikha Sharma, Aaron Buechlein, Douglas B Rusch, Patricia Silveyra\",\"doi\":\"10.1152/physiolgenomics.00049.2023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Epigenetic alterations such as dysregulation of miRNAs have been reported to play important roles in interactions between genetic and environmental factors. In this study, we tested the hypothesis that induction of lung inflammation by inhaled allergens triggers a sex-specific miRNA regulation that is dependent on chromosome complement and hormonal milieu. We challenged the four core genotypes (FCGs) model through intranasal sensitization with a house dust mite (HDM) solution (or PBS as a control) for 5 wk. The FCG model allows four combinations of gonads and sex chromosomes: <i>1</i>) XX mice with ovaries (XXF), <i>2</i>) XY mice with testes (XYM), <i>3</i>) XX mice with testes (XXM), and <i>4</i>) XY mice with ovaries (XYF). Following the challenge (<i>n</i> = 5-7/group), we assessed the expression of 84 inflammatory miRNAs in lung tissue using a PCR array and cytokine levels in bronchoalveolar lavage fluid (BAL) by a multiplex protein assay (<i>n</i> = 4-7 animals/group). Our results showed higher levels of the chemokine KC (an Il-8 homolog) and IL-7 in BAL from XYF mice challenged with HDM. In addition, IL-17A was significantly higher in BAL from both XXF and XYF mice. A three-way interaction among treatment, gonads, and sex chromosome revealed 60 of 64 miRNAs that differed in expression depending on genotype; XXF, XXM, XYF, and XYM mice had 45, 32, 4, and 52 differentially expressed miRNAs, respectively. Regulatory networks of miRNAs identified in this study were implicated in pathways associated with asthma. Female gonadal hormonal effects may alter miRNA expression and contribute to the higher susceptibility of females to asthma.<b>NEW & NOTEWORTHY</b> miRNAs play important roles in regulating gene and environmental interactions. However, their role in mediating sex differences in allergic responses and lung diseases has not been elucidated. Our study used a targeted omics approach to characterize the contributions of gonadal hormones and chromosomal components to lung responses to an allergen challenge. Our results point to the influence of sex hormones in miRNA expression and proinflammatory markers in allergic airway inflammation.</p>\",\"PeriodicalId\":20129,\"journal\":{\"name\":\"Physiological genomics\",\"volume\":\" \",\"pages\":\"179-193\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11281810/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physiological genomics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1152/physiolgenomics.00049.2023\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/12/4 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physiological genomics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1152/physiolgenomics.00049.2023","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/12/4 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Lung proinflammatory microRNA and cytokine expression in a mouse model of allergic inflammation: role of sex chromosome complement and gonadal hormones.
Epigenetic alterations such as dysregulation of miRNAs have been reported to play important roles in interactions between genetic and environmental factors. In this study, we tested the hypothesis that induction of lung inflammation by inhaled allergens triggers a sex-specific miRNA regulation that is dependent on chromosome complement and hormonal milieu. We challenged the four core genotypes (FCGs) model through intranasal sensitization with a house dust mite (HDM) solution (or PBS as a control) for 5 wk. The FCG model allows four combinations of gonads and sex chromosomes: 1) XX mice with ovaries (XXF), 2) XY mice with testes (XYM), 3) XX mice with testes (XXM), and 4) XY mice with ovaries (XYF). Following the challenge (n = 5-7/group), we assessed the expression of 84 inflammatory miRNAs in lung tissue using a PCR array and cytokine levels in bronchoalveolar lavage fluid (BAL) by a multiplex protein assay (n = 4-7 animals/group). Our results showed higher levels of the chemokine KC (an Il-8 homolog) and IL-7 in BAL from XYF mice challenged with HDM. In addition, IL-17A was significantly higher in BAL from both XXF and XYF mice. A three-way interaction among treatment, gonads, and sex chromosome revealed 60 of 64 miRNAs that differed in expression depending on genotype; XXF, XXM, XYF, and XYM mice had 45, 32, 4, and 52 differentially expressed miRNAs, respectively. Regulatory networks of miRNAs identified in this study were implicated in pathways associated with asthma. Female gonadal hormonal effects may alter miRNA expression and contribute to the higher susceptibility of females to asthma.NEW & NOTEWORTHY miRNAs play important roles in regulating gene and environmental interactions. However, their role in mediating sex differences in allergic responses and lung diseases has not been elucidated. Our study used a targeted omics approach to characterize the contributions of gonadal hormones and chromosomal components to lung responses to an allergen challenge. Our results point to the influence of sex hormones in miRNA expression and proinflammatory markers in allergic airway inflammation.
期刊介绍:
The Physiological Genomics publishes original papers, reviews and rapid reports in a wide area of research focused on uncovering the links between genes and physiology at all levels of biological organization. Articles on topics ranging from single genes to the whole genome and their links to the physiology of humans, any model organism, organ, tissue or cell are welcome. Areas of interest include complex polygenic traits preferably of importance to human health and gene-function relationships of disease processes. Specifically, the Journal has dedicated Sections focused on genome-wide association studies (GWAS) to function, cardiovascular, renal, metabolic and neurological systems, exercise physiology, pharmacogenomics, clinical, translational and genomics for precision medicine, comparative and statistical genomics and databases. For further details on research themes covered within these Sections, please refer to the descriptions given under each Section.