Sina Fathi, Ali Ahmadi, Afsaneh Dehnad, Mostafa Almasi-Dooghaee, Melika Sadegh
{"title":"基于深度学习的MRI图像早期诊断阿尔茨海默病集成方法。","authors":"Sina Fathi, Ali Ahmadi, Afsaneh Dehnad, Mostafa Almasi-Dooghaee, Melika Sadegh","doi":"10.1007/s12021-023-09646-2","DOIUrl":null,"url":null,"abstract":"<p><p>Recently, the early diagnosis of Alzheimer's disease has gained major attention due to the growing prevalence of the disease and the resulting costs imposed on individuals and society. The main objective of this study was to propose an ensemble method based on deep learning for the early diagnosis of AD using MRI images. The methodology of this study consisted of collecting the dataset, preprocessing, creating the individual and ensemble models, evaluating the models based on ADNI data, and validating the trained model based on the local dataset. The proposed method was an ensemble approach selected through a comparative analysis of various ensemble scenarios. Finally, the six best individual CNN-based classifiers were selected to combine and constitute the ensemble model. The evaluation showed an accuracy rate of 98.57, 96.37, 94.22, 99.83, 93.88, and 93.92 for NC/AD, NC/EMCI, EMCI/LMCI, LMCI/AD, four-way and three-way classification groups, respectively. The validation results on the local dataset revealed an accuracy of 88.46 for three-way classification. Our performance results were higher than most reviewed studies and comparable with others. Although comparative analysis showed superior results of ensemble methods against individual architectures, there were no significant differences among various ensemble approaches. The validation results revealed the low performance of individual models in practice. In contrast, the ensemble method showed promising results. However, further studies on various and larger datasets are required to validate the generalizability of the model.</p>","PeriodicalId":49761,"journal":{"name":"Neuroinformatics","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10917836/pdf/","citationCount":"0","resultStr":"{\"title\":\"A Deep Learning-Based Ensemble Method for Early Diagnosis of Alzheimer's Disease using MRI Images.\",\"authors\":\"Sina Fathi, Ali Ahmadi, Afsaneh Dehnad, Mostafa Almasi-Dooghaee, Melika Sadegh\",\"doi\":\"10.1007/s12021-023-09646-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Recently, the early diagnosis of Alzheimer's disease has gained major attention due to the growing prevalence of the disease and the resulting costs imposed on individuals and society. The main objective of this study was to propose an ensemble method based on deep learning for the early diagnosis of AD using MRI images. The methodology of this study consisted of collecting the dataset, preprocessing, creating the individual and ensemble models, evaluating the models based on ADNI data, and validating the trained model based on the local dataset. The proposed method was an ensemble approach selected through a comparative analysis of various ensemble scenarios. Finally, the six best individual CNN-based classifiers were selected to combine and constitute the ensemble model. The evaluation showed an accuracy rate of 98.57, 96.37, 94.22, 99.83, 93.88, and 93.92 for NC/AD, NC/EMCI, EMCI/LMCI, LMCI/AD, four-way and three-way classification groups, respectively. The validation results on the local dataset revealed an accuracy of 88.46 for three-way classification. Our performance results were higher than most reviewed studies and comparable with others. Although comparative analysis showed superior results of ensemble methods against individual architectures, there were no significant differences among various ensemble approaches. The validation results revealed the low performance of individual models in practice. In contrast, the ensemble method showed promising results. However, further studies on various and larger datasets are required to validate the generalizability of the model.</p>\",\"PeriodicalId\":49761,\"journal\":{\"name\":\"Neuroinformatics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10917836/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neuroinformatics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s12021-023-09646-2\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/12/2 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuroinformatics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12021-023-09646-2","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/12/2 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
A Deep Learning-Based Ensemble Method for Early Diagnosis of Alzheimer's Disease using MRI Images.
Recently, the early diagnosis of Alzheimer's disease has gained major attention due to the growing prevalence of the disease and the resulting costs imposed on individuals and society. The main objective of this study was to propose an ensemble method based on deep learning for the early diagnosis of AD using MRI images. The methodology of this study consisted of collecting the dataset, preprocessing, creating the individual and ensemble models, evaluating the models based on ADNI data, and validating the trained model based on the local dataset. The proposed method was an ensemble approach selected through a comparative analysis of various ensemble scenarios. Finally, the six best individual CNN-based classifiers were selected to combine and constitute the ensemble model. The evaluation showed an accuracy rate of 98.57, 96.37, 94.22, 99.83, 93.88, and 93.92 for NC/AD, NC/EMCI, EMCI/LMCI, LMCI/AD, four-way and three-way classification groups, respectively. The validation results on the local dataset revealed an accuracy of 88.46 for three-way classification. Our performance results were higher than most reviewed studies and comparable with others. Although comparative analysis showed superior results of ensemble methods against individual architectures, there were no significant differences among various ensemble approaches. The validation results revealed the low performance of individual models in practice. In contrast, the ensemble method showed promising results. However, further studies on various and larger datasets are required to validate the generalizability of the model.
期刊介绍:
Neuroinformatics publishes original articles and reviews with an emphasis on data structure and software tools related to analysis, modeling, integration, and sharing in all areas of neuroscience research. The editors particularly invite contributions on: (1) Theory and methodology, including discussions on ontologies, modeling approaches, database design, and meta-analyses; (2) Descriptions of developed databases and software tools, and of the methods for their distribution; (3) Relevant experimental results, such as reports accompanie by the release of massive data sets; (4) Computational simulations of models integrating and organizing complex data; and (5) Neuroengineering approaches, including hardware, robotics, and information theory studies.