Han Jiang, Zhanwei Zhao, Haiyan Yu, Qiang Lin, Yali Liu
{"title":"趋化因子及其受体在Syngnathidae雄性妊娠中的进化特征及功能作用。","authors":"Han Jiang, Zhanwei Zhao, Haiyan Yu, Qiang Lin, Yali Liu","doi":"10.1007/s42995-023-00205-x","DOIUrl":null,"url":null,"abstract":"<p><p>Vertebrates have developed various modes of reproduction, some of which are found in Teleosts. Over 300 species of the Syngnathidae (seahorses, pipefishes and seadragons) exhibit male pregnancies; the males have specialized brood pouches that provide immune protection, nourishment, and oxygen regulation. Chemokines play a vital role at the mammalian maternal-fetal interface; however, their functions in fish reproduction are unclear. This study revealed the evolutionary traits and potential functions of chemokine genes in 22 oviparous, ovoviviparous, and viviparous fish species through comparative genomic analyses. Our results showed that chemokine gene copy numbers and evolutionary rates vary among species with different modes of reproduction. Syngnathidae lost <i>cxcl13</i> and <i>cxcr5</i>, which are involved in key receptor-ligand pairs for lymphoid organ development. Notably, Syngnathidae have site-specific mutations in <i>cxcl12b</i> and <i>ccl44</i>, suggesting immune function during gestation. Moreover, transcriptome analysis revealed that chemokine gene expression varies among Syngnathidae species with different types of brood pouches, suggesting adaptive variations in chemokine functions among seahorses and their relatives. Furthermore, challenge experiments on seahorse brood pouches revealed a joint immune function of chemokine genes during male pregnancy. This study provides insights into the evolutionary diversity of chemokine genes associated with different reproductive modes in fish.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s42995-023-00205-x.</p>","PeriodicalId":53218,"journal":{"name":"Marine Life Science & Technology","volume":"5 4","pages":"500-510"},"PeriodicalIF":5.8000,"publicationDate":"2023-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10689615/pdf/","citationCount":"0","resultStr":"{\"title\":\"Evolutionary traits and functional roles of chemokines and their receptors in the male pregnancy of the Syngnathidae.\",\"authors\":\"Han Jiang, Zhanwei Zhao, Haiyan Yu, Qiang Lin, Yali Liu\",\"doi\":\"10.1007/s42995-023-00205-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Vertebrates have developed various modes of reproduction, some of which are found in Teleosts. Over 300 species of the Syngnathidae (seahorses, pipefishes and seadragons) exhibit male pregnancies; the males have specialized brood pouches that provide immune protection, nourishment, and oxygen regulation. Chemokines play a vital role at the mammalian maternal-fetal interface; however, their functions in fish reproduction are unclear. This study revealed the evolutionary traits and potential functions of chemokine genes in 22 oviparous, ovoviviparous, and viviparous fish species through comparative genomic analyses. Our results showed that chemokine gene copy numbers and evolutionary rates vary among species with different modes of reproduction. Syngnathidae lost <i>cxcl13</i> and <i>cxcr5</i>, which are involved in key receptor-ligand pairs for lymphoid organ development. Notably, Syngnathidae have site-specific mutations in <i>cxcl12b</i> and <i>ccl44</i>, suggesting immune function during gestation. Moreover, transcriptome analysis revealed that chemokine gene expression varies among Syngnathidae species with different types of brood pouches, suggesting adaptive variations in chemokine functions among seahorses and their relatives. Furthermore, challenge experiments on seahorse brood pouches revealed a joint immune function of chemokine genes during male pregnancy. This study provides insights into the evolutionary diversity of chemokine genes associated with different reproductive modes in fish.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s42995-023-00205-x.</p>\",\"PeriodicalId\":53218,\"journal\":{\"name\":\"Marine Life Science & Technology\",\"volume\":\"5 4\",\"pages\":\"500-510\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2023-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10689615/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Marine Life Science & Technology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s42995-023-00205-x\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/11/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"MARINE & FRESHWATER BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Marine Life Science & Technology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s42995-023-00205-x","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/11/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MARINE & FRESHWATER BIOLOGY","Score":null,"Total":0}
Evolutionary traits and functional roles of chemokines and their receptors in the male pregnancy of the Syngnathidae.
Vertebrates have developed various modes of reproduction, some of which are found in Teleosts. Over 300 species of the Syngnathidae (seahorses, pipefishes and seadragons) exhibit male pregnancies; the males have specialized brood pouches that provide immune protection, nourishment, and oxygen regulation. Chemokines play a vital role at the mammalian maternal-fetal interface; however, their functions in fish reproduction are unclear. This study revealed the evolutionary traits and potential functions of chemokine genes in 22 oviparous, ovoviviparous, and viviparous fish species through comparative genomic analyses. Our results showed that chemokine gene copy numbers and evolutionary rates vary among species with different modes of reproduction. Syngnathidae lost cxcl13 and cxcr5, which are involved in key receptor-ligand pairs for lymphoid organ development. Notably, Syngnathidae have site-specific mutations in cxcl12b and ccl44, suggesting immune function during gestation. Moreover, transcriptome analysis revealed that chemokine gene expression varies among Syngnathidae species with different types of brood pouches, suggesting adaptive variations in chemokine functions among seahorses and their relatives. Furthermore, challenge experiments on seahorse brood pouches revealed a joint immune function of chemokine genes during male pregnancy. This study provides insights into the evolutionary diversity of chemokine genes associated with different reproductive modes in fish.
Supplementary information: The online version contains supplementary material available at 10.1007/s42995-023-00205-x.
期刊介绍:
Marine Life Science & Technology (MLST), established in 2019, is dedicated to publishing original research papers that unveil new discoveries and theories spanning a wide spectrum of life sciences and technologies. This includes fundamental biology, fisheries science and technology, medicinal bioresources, food science, biotechnology, ecology, and environmental biology, with a particular focus on marine habitats.
The journal is committed to nurturing synergistic interactions among these diverse disciplines, striving to advance multidisciplinary approaches within the scientific field. It caters to a readership comprising biological scientists, aquaculture researchers, marine technologists, biological oceanographers, and ecologists.