扩大检测BAP1在肿瘤中的改变与肿瘤类型特异性表达评分的比较。

Ian R Sturgill, Jesse R Raab, Katherine A Hoadley
{"title":"扩大检测BAP1在肿瘤中的改变与肿瘤类型特异性表达评分的比较。","authors":"Ian R Sturgill, Jesse R Raab, Katherine A Hoadley","doi":"10.1101/2023.11.21.568094","DOIUrl":null,"url":null,"abstract":"<p><p>Aberrant expression of the <i>BAP1</i> tumor suppressor gene is a prominent risk factor for several tumor types and is important in tumor evolution and progression. Here we performed integrated multi-omic analyses using data from The Cancer Genome Atlas (TCGA) for 33 cancer types and over 10,000 individuals to identify alterations leading to <i>BAP1</i> disruption. We combined existing variant calls and new calls derived from a <i>de novo</i> local realignment pipeline across multiple independent variant callers, increasing somatic variant detection by 41% from 182 to 257, including 11 indels ≥40bp. The expanded detection of mutations highlights the power of new tools to uncover longer indels and impactful mutations. We developed an expression-based <i>BAP1</i> activity score and identified a transcriptional profile associated with <i>BAP1</i> disruption in cancer. <i>BAP1</i> has been proposed to play a critical role in controlling tumor plasticity and normal cell fate. Leveraging human and mouse liver datasets, <i>BAP1</i> loss in normal cells resulted in lower <i>BAP1</i> activity scores and lower scores were associated with a less-differentiated phenotype in embryonic cells. Together, our expanded <i>BAP1</i> mutant samples revealed a transcriptional signature in cancer cells, supporting <i>BAP1's</i> influences on cellular plasticity and cell identity maintenance.</p>","PeriodicalId":72407,"journal":{"name":"bioRxiv : the preprint server for biology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10690206/pdf/","citationCount":"0","resultStr":"{\"title\":\"Expanded detection and impact of <i>BAP1</i> alterations in cancer.\",\"authors\":\"Ian R Sturgill, Jesse R Raab, Katherine A Hoadley\",\"doi\":\"10.1101/2023.11.21.568094\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Aberrant expression of the <i>BAP1</i> tumor suppressor gene is a prominent risk factor for several tumor types and is important in tumor evolution and progression. Here we performed integrated multi-omic analyses using data from The Cancer Genome Atlas (TCGA) for 33 cancer types and over 10,000 individuals to identify alterations leading to <i>BAP1</i> disruption. We combined existing variant calls and new calls derived from a <i>de novo</i> local realignment pipeline across multiple independent variant callers, increasing somatic variant detection by 41% from 182 to 257, including 11 indels ≥40bp. The expanded detection of mutations highlights the power of new tools to uncover longer indels and impactful mutations. We developed an expression-based <i>BAP1</i> activity score and identified a transcriptional profile associated with <i>BAP1</i> disruption in cancer. <i>BAP1</i> has been proposed to play a critical role in controlling tumor plasticity and normal cell fate. Leveraging human and mouse liver datasets, <i>BAP1</i> loss in normal cells resulted in lower <i>BAP1</i> activity scores and lower scores were associated with a less-differentiated phenotype in embryonic cells. Together, our expanded <i>BAP1</i> mutant samples revealed a transcriptional signature in cancer cells, supporting <i>BAP1's</i> influences on cellular plasticity and cell identity maintenance.</p>\",\"PeriodicalId\":72407,\"journal\":{\"name\":\"bioRxiv : the preprint server for biology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10690206/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"bioRxiv : the preprint server for biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/2023.11.21.568094\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv : the preprint server for biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2023.11.21.568094","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

BAP1是一种肿瘤抑制基因,最初在葡萄膜黑色素瘤(UVM)、肾透明细胞癌(KIRC)和恶性间皮瘤(MESO)中进行了研究。早期的分析主要集中在单核苷酸变异上,但其他类型的改变,如较大的索引和基因水平拷贝数(CN)的丢失也可能导致BAP1表达的丢失。我们使用来自癌症基因组图谱(TCGA)的数据对33种癌症类型和超过10,000个个体进行了综合多组学分析。我们结合并手动审查了现有的变体呼叫和来自多个独立变体呼叫者(包括indel呼叫者)的全新本地重组管道的新呼叫,将高质量体细胞变体呼叫的检测从91个增加到130个,增加了30%,其中包括7个≥40bp的索引。包括CN丢失改变在内,来自32种癌症类型的1561份样本发生了BAP1改变,这些改变主要是CN驱动的。差异表达和生存分析揭示了与BAP1改变相关的共同和组织特异性后果。我们的研究结果广泛地强调了通过在大型癌症基因组研究(如TCGA)中使用新的计算方法所获得的改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Expanded detection and impact of BAP1 alterations in cancer.

Aberrant expression of the BAP1 tumor suppressor gene is a prominent risk factor for several tumor types and is important in tumor evolution and progression. Here we performed integrated multi-omic analyses using data from The Cancer Genome Atlas (TCGA) for 33 cancer types and over 10,000 individuals to identify alterations leading to BAP1 disruption. We combined existing variant calls and new calls derived from a de novo local realignment pipeline across multiple independent variant callers, increasing somatic variant detection by 41% from 182 to 257, including 11 indels ≥40bp. The expanded detection of mutations highlights the power of new tools to uncover longer indels and impactful mutations. We developed an expression-based BAP1 activity score and identified a transcriptional profile associated with BAP1 disruption in cancer. BAP1 has been proposed to play a critical role in controlling tumor plasticity and normal cell fate. Leveraging human and mouse liver datasets, BAP1 loss in normal cells resulted in lower BAP1 activity scores and lower scores were associated with a less-differentiated phenotype in embryonic cells. Together, our expanded BAP1 mutant samples revealed a transcriptional signature in cancer cells, supporting BAP1's influences on cellular plasticity and cell identity maintenance.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Increasing adult-born neurons protects mice from epilepsy. Activity of FoxP2-positive neurons is associated with tadpole begging behavior. Preventing evolutionary rescue in cancer. Fixational Eye Movements Enhance the Precision of Visual Information Transmitted by the Primate Retina. The Evolution of Heteroresistance via Small Colony Variants in Escherichia coli Following Long Term Exposure to Bacteriostatic Antibiotics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1