Asad Khan, Jeevan Kandel, Hilal Tayara, Kil To Chong
{"title":"利用机器学习方法预测钙钛矿太阳能电池的带隙和效率。","authors":"Asad Khan, Jeevan Kandel, Hilal Tayara, Kil To Chong","doi":"10.1002/minf.202300217","DOIUrl":null,"url":null,"abstract":"<p><p>Rapid and accurate prediction of bandgaps and efficiency of perovskite solar cells is a crucial challenge for various solar cell applications. Existing theoretical and experimental methods often accurately measure these parameters; however, these methods are costly and time-consuming. Machine learning-based approaches offer a promising and computationally efficient method to address this problem. In this study, we trained different machine learning(ML) models using previously reported experimental data. Among the different ML models, the CatBoostRegressor performed better for both bandgap and efficiency approximations. We evaluated the proposed model using k-fold cross-validation and investigated the relative importance of input features using Shapley Additive Explanations (SHAP). SHAP interprets valuable insights into feature contributions of the prediction of the proposed model. Furthermore, we validated the performance of the proposed model using an independent dataset, demonstrating its robustness and generalizability beyond the training data. Our findings show that machine learning-based approaches, with the aid of SHAP, can provide a promising and computationally efficient method for the accurate and rapid prediction of perovskite solar cell properties. The proposed model is expected to facilitate the discovery of new perovskite materials and is freely available at GitHub (https://github.com/AsadKhanJBNU/perovskite_bandgap_and_efficiency.git) for the perovskite community.</p>","PeriodicalId":18853,"journal":{"name":"Molecular Informatics","volume":" ","pages":"e202300217"},"PeriodicalIF":2.8000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Predicting the bandgap and efficiency of perovskite solar cells using machine learning methods.\",\"authors\":\"Asad Khan, Jeevan Kandel, Hilal Tayara, Kil To Chong\",\"doi\":\"10.1002/minf.202300217\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Rapid and accurate prediction of bandgaps and efficiency of perovskite solar cells is a crucial challenge for various solar cell applications. Existing theoretical and experimental methods often accurately measure these parameters; however, these methods are costly and time-consuming. Machine learning-based approaches offer a promising and computationally efficient method to address this problem. In this study, we trained different machine learning(ML) models using previously reported experimental data. Among the different ML models, the CatBoostRegressor performed better for both bandgap and efficiency approximations. We evaluated the proposed model using k-fold cross-validation and investigated the relative importance of input features using Shapley Additive Explanations (SHAP). SHAP interprets valuable insights into feature contributions of the prediction of the proposed model. Furthermore, we validated the performance of the proposed model using an independent dataset, demonstrating its robustness and generalizability beyond the training data. Our findings show that machine learning-based approaches, with the aid of SHAP, can provide a promising and computationally efficient method for the accurate and rapid prediction of perovskite solar cell properties. The proposed model is expected to facilitate the discovery of new perovskite materials and is freely available at GitHub (https://github.com/AsadKhanJBNU/perovskite_bandgap_and_efficiency.git) for the perovskite community.</p>\",\"PeriodicalId\":18853,\"journal\":{\"name\":\"Molecular Informatics\",\"volume\":\" \",\"pages\":\"e202300217\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Informatics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1002/minf.202300217\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/4 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Informatics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/minf.202300217","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/4 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
Predicting the bandgap and efficiency of perovskite solar cells using machine learning methods.
Rapid and accurate prediction of bandgaps and efficiency of perovskite solar cells is a crucial challenge for various solar cell applications. Existing theoretical and experimental methods often accurately measure these parameters; however, these methods are costly and time-consuming. Machine learning-based approaches offer a promising and computationally efficient method to address this problem. In this study, we trained different machine learning(ML) models using previously reported experimental data. Among the different ML models, the CatBoostRegressor performed better for both bandgap and efficiency approximations. We evaluated the proposed model using k-fold cross-validation and investigated the relative importance of input features using Shapley Additive Explanations (SHAP). SHAP interprets valuable insights into feature contributions of the prediction of the proposed model. Furthermore, we validated the performance of the proposed model using an independent dataset, demonstrating its robustness and generalizability beyond the training data. Our findings show that machine learning-based approaches, with the aid of SHAP, can provide a promising and computationally efficient method for the accurate and rapid prediction of perovskite solar cell properties. The proposed model is expected to facilitate the discovery of new perovskite materials and is freely available at GitHub (https://github.com/AsadKhanJBNU/perovskite_bandgap_and_efficiency.git) for the perovskite community.
期刊介绍:
Molecular Informatics is a peer-reviewed, international forum for publication of high-quality, interdisciplinary research on all molecular aspects of bio/cheminformatics and computer-assisted molecular design. Molecular Informatics succeeded QSAR & Combinatorial Science in 2010.
Molecular Informatics presents methodological innovations that will lead to a deeper understanding of ligand-receptor interactions, macromolecular complexes, molecular networks, design concepts and processes that demonstrate how ideas and design concepts lead to molecules with a desired structure or function, preferably including experimental validation.
The journal''s scope includes but is not limited to the fields of drug discovery and chemical biology, protein and nucleic acid engineering and design, the design of nanomolecular structures, strategies for modeling of macromolecular assemblies, molecular networks and systems, pharmaco- and chemogenomics, computer-assisted screening strategies, as well as novel technologies for the de novo design of biologically active molecules. As a unique feature Molecular Informatics publishes so-called "Methods Corner" review-type articles which feature important technological concepts and advances within the scope of the journal.