Rishi R. Dhingra , Werner I. Furuya , Yi Kee Yoong , Mathias Dutschmann
{"title":"pre-Bötzinger复合体对于迷走神经的吸气和吸气后运动放电的表达是必需的。","authors":"Rishi R. Dhingra , Werner I. Furuya , Yi Kee Yoong , Mathias Dutschmann","doi":"10.1016/j.resp.2023.104202","DOIUrl":null,"url":null,"abstract":"<div><p><span>The mammalian three-phase respiratory motor pattern of inspiration, post-inspiration and expiration is expressed in spinal and cranial motor nerve discharge and is generated by a distributed ponto-medullary respiratory pattern<span> generating network. Respiratory motor pattern generation depends on a rhythmogenic kernel located within the pre-Bötzinger complex (pre-BötC). In the present study, we tested the effect of unilateral and bilateral inactivation of the pre-BötC after local microinjection of the GABA</span></span><sub>A</sub><span><span> receptor agonist isoguvacine<span> (10 mM, 50 nl) on phrenic (PNA), hypoglossal (HNA) and vagal nerve (VNA) respiratory motor activities in an in situ perfused brainstem preparation of rats. Bilateral inactivation of the pre-BötC triggered cessation of phrenic (PNA), hypoglossal (HNA) and vagal (VNA) </span></span>nerve activities<span> for 15–20 min. Ipsilateral isoguvacine injections into the pre-BötC triggered transient (6–8 min) cessation of inspiratory and post-inspiratory VNA (p < 0.001) and suppressed inspiratory HNA by − 70 ± 15% (p < 0.01), while inspiratory PNA burst frequency increased by 46 ± 30% (p < 0.01). Taken together, these observations confirm the role of the pre-BötC as the rhythmogenic kernel of the mammalian respiratory network in situ and highlight a significant role for the pre-BötC in the transmission of vagal inspiratory and post-inspiratory pre-motor drive to the nucleus ambiguus.</span></span></p></div>","PeriodicalId":20961,"journal":{"name":"Respiratory Physiology & Neurobiology","volume":"320 ","pages":"Article 104202"},"PeriodicalIF":1.9000,"publicationDate":"2023-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The pre-Bötzinger complex is necessary for the expression of inspiratory and post-inspiratory motor discharge of the vagus\",\"authors\":\"Rishi R. Dhingra , Werner I. Furuya , Yi Kee Yoong , Mathias Dutschmann\",\"doi\":\"10.1016/j.resp.2023.104202\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>The mammalian three-phase respiratory motor pattern of inspiration, post-inspiration and expiration is expressed in spinal and cranial motor nerve discharge and is generated by a distributed ponto-medullary respiratory pattern<span> generating network. Respiratory motor pattern generation depends on a rhythmogenic kernel located within the pre-Bötzinger complex (pre-BötC). In the present study, we tested the effect of unilateral and bilateral inactivation of the pre-BötC after local microinjection of the GABA</span></span><sub>A</sub><span><span> receptor agonist isoguvacine<span> (10 mM, 50 nl) on phrenic (PNA), hypoglossal (HNA) and vagal nerve (VNA) respiratory motor activities in an in situ perfused brainstem preparation of rats. Bilateral inactivation of the pre-BötC triggered cessation of phrenic (PNA), hypoglossal (HNA) and vagal (VNA) </span></span>nerve activities<span> for 15–20 min. Ipsilateral isoguvacine injections into the pre-BötC triggered transient (6–8 min) cessation of inspiratory and post-inspiratory VNA (p < 0.001) and suppressed inspiratory HNA by − 70 ± 15% (p < 0.01), while inspiratory PNA burst frequency increased by 46 ± 30% (p < 0.01). Taken together, these observations confirm the role of the pre-BötC as the rhythmogenic kernel of the mammalian respiratory network in situ and highlight a significant role for the pre-BötC in the transmission of vagal inspiratory and post-inspiratory pre-motor drive to the nucleus ambiguus.</span></span></p></div>\",\"PeriodicalId\":20961,\"journal\":{\"name\":\"Respiratory Physiology & Neurobiology\",\"volume\":\"320 \",\"pages\":\"Article 104202\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-12-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Respiratory Physiology & Neurobiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1569904823001908\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Respiratory Physiology & Neurobiology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1569904823001908","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
The pre-Bötzinger complex is necessary for the expression of inspiratory and post-inspiratory motor discharge of the vagus
The mammalian three-phase respiratory motor pattern of inspiration, post-inspiration and expiration is expressed in spinal and cranial motor nerve discharge and is generated by a distributed ponto-medullary respiratory pattern generating network. Respiratory motor pattern generation depends on a rhythmogenic kernel located within the pre-Bötzinger complex (pre-BötC). In the present study, we tested the effect of unilateral and bilateral inactivation of the pre-BötC after local microinjection of the GABAA receptor agonist isoguvacine (10 mM, 50 nl) on phrenic (PNA), hypoglossal (HNA) and vagal nerve (VNA) respiratory motor activities in an in situ perfused brainstem preparation of rats. Bilateral inactivation of the pre-BötC triggered cessation of phrenic (PNA), hypoglossal (HNA) and vagal (VNA) nerve activities for 15–20 min. Ipsilateral isoguvacine injections into the pre-BötC triggered transient (6–8 min) cessation of inspiratory and post-inspiratory VNA (p < 0.001) and suppressed inspiratory HNA by − 70 ± 15% (p < 0.01), while inspiratory PNA burst frequency increased by 46 ± 30% (p < 0.01). Taken together, these observations confirm the role of the pre-BötC as the rhythmogenic kernel of the mammalian respiratory network in situ and highlight a significant role for the pre-BötC in the transmission of vagal inspiratory and post-inspiratory pre-motor drive to the nucleus ambiguus.
期刊介绍:
Respiratory Physiology & Neurobiology (RESPNB) publishes original articles and invited reviews concerning physiology and pathophysiology of respiration in its broadest sense.
Although a special focus is on topics in neurobiology, high quality papers in respiratory molecular and cellular biology are also welcome, as are high-quality papers in traditional areas, such as:
-Mechanics of breathing-
Gas exchange and acid-base balance-
Respiration at rest and exercise-
Respiration in unusual conditions, like high or low pressure or changes of temperature, low ambient oxygen-
Embryonic and adult respiration-
Comparative respiratory physiology.
Papers on clinical aspects, original methods, as well as theoretical papers are also considered as long as they foster the understanding of respiratory physiology and pathophysiology.