IF 2.9 3区 生物学Q3 BIOCHEMISTRY & MOLECULAR BIOLOGYBMB ReportsPub Date : 2024-01-01
A Reum Han, Ha Rim Shin, Jiyeon Kwon, Soo Been Lee, Sang Eun Lee, Eun-Young Kim, Jiyeon Kweon, Eun-Ju Chang, Yongsub Kim, Seong Who Kim
{"title":"通过 CRISPR-Cas9 核糖核蛋白 (RNP) 在间充质干细胞中的传递实现高效基因组编辑。","authors":"A Reum Han, Ha Rim Shin, Jiyeon Kwon, Soo Been Lee, Sang Eun Lee, Eun-Young Kim, Jiyeon Kweon, Eun-Ju Chang, Yongsub Kim, Seong Who Kim","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>The CRISPR-Cas9 system has significantly advanced regenerative medicine research by enabling genome editing in stem cells. Due to their desirable properties, mesenchymal stem cells (MSCs) have recently emerged as highly promising therapeutic agents, which properties include differentiation ability and cytokine production. While CRISPR-Cas9 technology is applied to develop MSC-based therapeutics, MSCs exhibit inefficient genome editing, and susceptibility to plasmid DNA. In this study, we compared and optimized plasmid DNA and RNP approaches for efficient genome engineering in MSCs. The RNP-mediated approach enabled genome editing with high indel frequency and low cytotoxicity in MSCs. By utilizing Cas9 RNPs, we successfully generated B2M-knockout MSCs, which reduced T-cell differentiation, and improved MSC survival. Furthermore, this approach enhanced the immunomodulatory effect of IFN-r priming. These findings indicate that the RNP-mediated engineering of MSC genomes can achieve high efficiency, and engineered MSCs offer potential as a promising therapeutic strategy. [BMB Reports 2024; 57(1): 60-65].</p>","PeriodicalId":9010,"journal":{"name":"BMB Reports","volume":" ","pages":"60-65"},"PeriodicalIF":2.9000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10828435/pdf/","citationCount":"0","resultStr":"{\"title\":\"Highly efficient genome editing via CRISPR-Cas9 ribonucleoprotein (RNP) delivery in mesenchymal stem cells.\",\"authors\":\"A Reum Han, Ha Rim Shin, Jiyeon Kwon, Soo Been Lee, Sang Eun Lee, Eun-Young Kim, Jiyeon Kweon, Eun-Ju Chang, Yongsub Kim, Seong Who Kim\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The CRISPR-Cas9 system has significantly advanced regenerative medicine research by enabling genome editing in stem cells. Due to their desirable properties, mesenchymal stem cells (MSCs) have recently emerged as highly promising therapeutic agents, which properties include differentiation ability and cytokine production. While CRISPR-Cas9 technology is applied to develop MSC-based therapeutics, MSCs exhibit inefficient genome editing, and susceptibility to plasmid DNA. In this study, we compared and optimized plasmid DNA and RNP approaches for efficient genome engineering in MSCs. The RNP-mediated approach enabled genome editing with high indel frequency and low cytotoxicity in MSCs. By utilizing Cas9 RNPs, we successfully generated B2M-knockout MSCs, which reduced T-cell differentiation, and improved MSC survival. Furthermore, this approach enhanced the immunomodulatory effect of IFN-r priming. These findings indicate that the RNP-mediated engineering of MSC genomes can achieve high efficiency, and engineered MSCs offer potential as a promising therapeutic strategy. [BMB Reports 2024; 57(1): 60-65].</p>\",\"PeriodicalId\":9010,\"journal\":{\"name\":\"BMB Reports\",\"volume\":\" \",\"pages\":\"60-65\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10828435/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BMB Reports\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMB Reports","FirstCategoryId":"99","ListUrlMain":"","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
CRISPR-Cas9系统通过对干细胞进行基因组编辑,极大地推动了再生医学研究。间充质干细胞(MSCs)具有理想的特性,包括分化能力和细胞因子的产生,因此最近已成为极具潜力的治疗药物。虽然CRISPR-Cas9技术已被应用于开发基于间充质干细胞的疗法,但间充质干细胞表现出基因组编辑效率低、易受质粒DNA影响等问题。在本研究中,我们比较并优化了质粒 DNA 和 RNP 方法,以实现间充质干细胞的高效基因组工程。RNP 介导的方法能在间充质干细胞中进行基因组编辑,且具有高吲哚频率和低细胞毒性。通过利用 Cas9 RNPs,我们成功生成了 B2M 基因敲除的间充质干细胞,从而减少了 T 细胞分化,并提高了间充质干细胞的存活率。此外,这种方法还增强了 IFN-r 引物的免疫调节作用。这些研究结果表明,RNP介导的间充质干细胞基因组工程可以达到很高的效率,工程间充质干细胞有望成为一种有前途的治疗策略。
Highly efficient genome editing via CRISPR-Cas9 ribonucleoprotein (RNP) delivery in mesenchymal stem cells.
The CRISPR-Cas9 system has significantly advanced regenerative medicine research by enabling genome editing in stem cells. Due to their desirable properties, mesenchymal stem cells (MSCs) have recently emerged as highly promising therapeutic agents, which properties include differentiation ability and cytokine production. While CRISPR-Cas9 technology is applied to develop MSC-based therapeutics, MSCs exhibit inefficient genome editing, and susceptibility to plasmid DNA. In this study, we compared and optimized plasmid DNA and RNP approaches for efficient genome engineering in MSCs. The RNP-mediated approach enabled genome editing with high indel frequency and low cytotoxicity in MSCs. By utilizing Cas9 RNPs, we successfully generated B2M-knockout MSCs, which reduced T-cell differentiation, and improved MSC survival. Furthermore, this approach enhanced the immunomodulatory effect of IFN-r priming. These findings indicate that the RNP-mediated engineering of MSC genomes can achieve high efficiency, and engineered MSCs offer potential as a promising therapeutic strategy. [BMB Reports 2024; 57(1): 60-65].
期刊介绍:
The BMB Reports (BMB Rep, established in 1968) is published at the end of every month by Korean Society for Biochemistry and Molecular Biology. Copyright is reserved by the Society. The journal publishes short articles and mini reviews. We expect that the BMB Reports will deliver the new scientific findings and knowledge to our readers in fast and timely manner.