多奈单抗治疗早期阿尔茨海默病的证据和治疗优势。

Q3 Pharmacology, Toxicology and Pharmaceutics Journal of Basic and Clinical Physiology and Pharmacology Pub Date : 2023-12-06 eCollection Date: 2024-01-01 DOI:10.1515/jbcpp-2023-0176
Ajay Kumar Shukla, Saurav Misra
{"title":"多奈单抗治疗早期阿尔茨海默病的证据和治疗优势。","authors":"Ajay Kumar Shukla, Saurav Misra","doi":"10.1515/jbcpp-2023-0176","DOIUrl":null,"url":null,"abstract":"<p><p>The humanised monoclonal antibody donanemab is being developed to treat early onset Alzheimer's disease (AD). This drug targets N-truncated pyroglutamate amyloid-peptide at position 3 (N3pG), a modified form of deposited amyloid-peptide. The symptoms of Alzheimer's disease include gradual memory loss and other cognitive impairments. This disease is characterized by amyloid plaques, which are formed as a result of an accumulation of amyloid-(A-β) peptides. Despite granting donanemab breakthrough therapy designation in June 2021, the FDA rejected donanemab's accelerated approval application in January 2023, due to inadequate safety data. According to the baseline amyloid level, the time to achieve plaque clearance (amyloid plaque level <24.1 centiloids) varied. Patients with higher baseline levels were more likely to achieve amyloid clearance. The safety of the drug was demonstrated by amyloid-related imaging abnormalities (ARIA), which ranged from 26.1 to 30.5 % in the studies. Clinical trial results have shown that donanemab delays cognitive and functional deterioration in patients with mild to moderate AD. However, it is not yet known whether donenameb offers therapeutic benefits that can change and improve the clinical condition of AD patients. To achieve significant clinical benefits in AD patients with cognitive impairment, further studies may be needed to investigate the interaction between A-β plaque reduction and toxic tau levels.</p>","PeriodicalId":15352,"journal":{"name":"Journal of Basic and Clinical Physiology and Pharmacology","volume":" ","pages":"25-29"},"PeriodicalIF":0.0000,"publicationDate":"2023-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evidences and therapeutic advantages of donanemab in the treatment of early Alzheimer's disease.\",\"authors\":\"Ajay Kumar Shukla, Saurav Misra\",\"doi\":\"10.1515/jbcpp-2023-0176\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The humanised monoclonal antibody donanemab is being developed to treat early onset Alzheimer's disease (AD). This drug targets N-truncated pyroglutamate amyloid-peptide at position 3 (N3pG), a modified form of deposited amyloid-peptide. The symptoms of Alzheimer's disease include gradual memory loss and other cognitive impairments. This disease is characterized by amyloid plaques, which are formed as a result of an accumulation of amyloid-(A-β) peptides. Despite granting donanemab breakthrough therapy designation in June 2021, the FDA rejected donanemab's accelerated approval application in January 2023, due to inadequate safety data. According to the baseline amyloid level, the time to achieve plaque clearance (amyloid plaque level <24.1 centiloids) varied. Patients with higher baseline levels were more likely to achieve amyloid clearance. The safety of the drug was demonstrated by amyloid-related imaging abnormalities (ARIA), which ranged from 26.1 to 30.5 % in the studies. Clinical trial results have shown that donanemab delays cognitive and functional deterioration in patients with mild to moderate AD. However, it is not yet known whether donenameb offers therapeutic benefits that can change and improve the clinical condition of AD patients. To achieve significant clinical benefits in AD patients with cognitive impairment, further studies may be needed to investigate the interaction between A-β plaque reduction and toxic tau levels.</p>\",\"PeriodicalId\":15352,\"journal\":{\"name\":\"Journal of Basic and Clinical Physiology and Pharmacology\",\"volume\":\" \",\"pages\":\"25-29\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Basic and Clinical Physiology and Pharmacology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/jbcpp-2023-0176\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q3\",\"JCRName\":\"Pharmacology, Toxicology and Pharmaceutics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Basic and Clinical Physiology and Pharmacology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/jbcpp-2023-0176","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"Pharmacology, Toxicology and Pharmaceutics","Score":null,"Total":0}
引用次数: 0

摘要

目前正在开发人源化单克隆抗体 Donanemab,用于治疗早发性阿尔茨海默病(AD)。这种药物的靶点是位于第 3 位的 N-截短焦谷氨酸淀粉样肽(N3pG),这是一种经过修饰的淀粉样肽沉积形式。阿尔茨海默病的症状包括逐渐丧失记忆和其他认知障碍。这种疾病的特征是淀粉样蛋白斑块,它是淀粉样蛋白-(A-β)肽累积形成的结果。尽管美国食品和药物管理局于2021年6月授予多那尼单抗突破性疗法称号,但由于安全性数据不足,于2023年1月拒绝了多那尼单抗的加速审批申请。根据基线淀粉样蛋白水平,达到斑块清除的时间(淀粉样蛋白斑块水平
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Evidences and therapeutic advantages of donanemab in the treatment of early Alzheimer's disease.

The humanised monoclonal antibody donanemab is being developed to treat early onset Alzheimer's disease (AD). This drug targets N-truncated pyroglutamate amyloid-peptide at position 3 (N3pG), a modified form of deposited amyloid-peptide. The symptoms of Alzheimer's disease include gradual memory loss and other cognitive impairments. This disease is characterized by amyloid plaques, which are formed as a result of an accumulation of amyloid-(A-β) peptides. Despite granting donanemab breakthrough therapy designation in June 2021, the FDA rejected donanemab's accelerated approval application in January 2023, due to inadequate safety data. According to the baseline amyloid level, the time to achieve plaque clearance (amyloid plaque level <24.1 centiloids) varied. Patients with higher baseline levels were more likely to achieve amyloid clearance. The safety of the drug was demonstrated by amyloid-related imaging abnormalities (ARIA), which ranged from 26.1 to 30.5 % in the studies. Clinical trial results have shown that donanemab delays cognitive and functional deterioration in patients with mild to moderate AD. However, it is not yet known whether donenameb offers therapeutic benefits that can change and improve the clinical condition of AD patients. To achieve significant clinical benefits in AD patients with cognitive impairment, further studies may be needed to investigate the interaction between A-β plaque reduction and toxic tau levels.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Basic and Clinical Physiology and Pharmacology
Journal of Basic and Clinical Physiology and Pharmacology Pharmacology, Toxicology and Pharmaceutics-Pharmacology
CiteScore
3.90
自引率
0.00%
发文量
53
期刊介绍: The Journal of Basic and Clinical Physiology and Pharmacology (JBCPP) is a peer-reviewed bi-monthly published journal in experimental medicine. JBCPP publishes novel research in the physiological and pharmacological sciences, including brain research; cardiovascular-pulmonary interactions; exercise; thermal control; haematology; immune response; inflammation; metabolism; oxidative stress; and phytotherapy. As the borders between physiology, pharmacology and biochemistry become increasingly blurred, we also welcome papers using cutting-edge techniques in cellular and/or molecular biology to link descriptive or behavioral studies with cellular and molecular mechanisms underlying the integrative processes. Topics: Behavior and Neuroprotection, Reproduction, Genotoxicity and Cytotoxicity, Vascular Conditions, Cardiovascular Function, Cardiovascular-Pulmonary Interactions, Oxidative Stress, Metabolism, Immune Response, Hematological Profile, Inflammation, Infection, Phytotherapy.
期刊最新文献
Effect of omega-3 fatty acids supplementation on muscle mass, fat mass, and visceral fat of hemodialysis patients; A randomized clinical trial. Choroidal and retinal alteration after long-term use of tadalafil: a prospective non-randomized clinical trial. Immediate effect of sunlight exposure through blue glass on blood pressure in hypertensive patients: a randomized controlled trial. The alarming link between the COVID-19 pandemic and stroke: why ignoring this association after relapse of the disease has dangerous consequences. Identification of ocular artifact in EEG signals using VMD and Hurst exponent.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1