TGFß1刺激淋巴内皮细胞产生IL7和IL15,它们是具有间质特性的乳腺癌细胞的趋化因子。

IF 3 4区 医学 Q2 ENDOCRINOLOGY & METABOLISM Journal of Mammary Gland Biology and Neoplasia Pub Date : 2023-12-06 DOI:10.1007/s10911-023-09552-y
Nikolina Giotopoulou, Wenyang Shi, Malgorzata Maria Parniewska, Wenwen Sun, Jonas Fuxe
{"title":"TGFß1刺激淋巴内皮细胞产生IL7和IL15,它们是具有间质特性的乳腺癌细胞的趋化因子。","authors":"Nikolina Giotopoulou, Wenyang Shi, Malgorzata Maria Parniewska, Wenwen Sun, Jonas Fuxe","doi":"10.1007/s10911-023-09552-y","DOIUrl":null,"url":null,"abstract":"<p><p>The lymphatic system is a major gateway for tumor cell dissemination but the mechanisms of how tumor cells gain access to lymphatic vessels are not completely understood. Breast cancer cells undergoing epithelial-mesenchymal transition (EMT) gain invasive and migratory properties. Overexpression of the cytokine transforming growth factor β1 (TGFβ1), a potent inducer of EMT, is frequently detected in the tumor microenvironment and correlates with invasion and lymph metastasis. Recently, we reported that TGFβ1 stimulated breast cancer cells with mesenchymal properties to migrate in a targeted fashion towards the lymphatic system via CCR7/CCL21-mediated chemotaxis, similar to dendritic cells during inflammation. Here, we aimed to identify additional chemotactic factors and corresponding receptors that could be involved in guiding breast cancer cells through the lymphatic system. Through a combination of RNA sequencing analysis, database screening and invasion assays we identified IL7/IL7R and IL15/IL15R as pairs of chemokines and receptors with potential roles in promoting chemotactic migration of breast cancer cells with mesenchymal properties towards the lymphatics. The results demonstrate the capacity of TGFβ1 to orchestrate crosstalk between tumor cells and lymphatic endothelial cells and warrant further studies to explore the roles of IL7 and IL15 in promoting lymph metastasis of breast cancer.</p>","PeriodicalId":16413,"journal":{"name":"Journal of Mammary Gland Biology and Neoplasia","volume":null,"pages":null},"PeriodicalIF":3.0000,"publicationDate":"2023-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10700205/pdf/","citationCount":"0","resultStr":"{\"title\":\"TGFß1 Stimulates Lymphatic Endothelial Cells to Produce IL7 and IL15, Which Act as Chemotactic Factors for Breast Cancer Cells with Mesenchymal Properties.\",\"authors\":\"Nikolina Giotopoulou, Wenyang Shi, Malgorzata Maria Parniewska, Wenwen Sun, Jonas Fuxe\",\"doi\":\"10.1007/s10911-023-09552-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The lymphatic system is a major gateway for tumor cell dissemination but the mechanisms of how tumor cells gain access to lymphatic vessels are not completely understood. Breast cancer cells undergoing epithelial-mesenchymal transition (EMT) gain invasive and migratory properties. Overexpression of the cytokine transforming growth factor β1 (TGFβ1), a potent inducer of EMT, is frequently detected in the tumor microenvironment and correlates with invasion and lymph metastasis. Recently, we reported that TGFβ1 stimulated breast cancer cells with mesenchymal properties to migrate in a targeted fashion towards the lymphatic system via CCR7/CCL21-mediated chemotaxis, similar to dendritic cells during inflammation. Here, we aimed to identify additional chemotactic factors and corresponding receptors that could be involved in guiding breast cancer cells through the lymphatic system. Through a combination of RNA sequencing analysis, database screening and invasion assays we identified IL7/IL7R and IL15/IL15R as pairs of chemokines and receptors with potential roles in promoting chemotactic migration of breast cancer cells with mesenchymal properties towards the lymphatics. The results demonstrate the capacity of TGFβ1 to orchestrate crosstalk between tumor cells and lymphatic endothelial cells and warrant further studies to explore the roles of IL7 and IL15 in promoting lymph metastasis of breast cancer.</p>\",\"PeriodicalId\":16413,\"journal\":{\"name\":\"Journal of Mammary Gland Biology and Neoplasia\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2023-12-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10700205/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mammary Gland Biology and Neoplasia\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s10911-023-09552-y\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENDOCRINOLOGY & METABOLISM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mammary Gland Biology and Neoplasia","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10911-023-09552-y","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0

摘要

淋巴系统是肿瘤细胞扩散的主要通道,但肿瘤细胞如何进入淋巴管的机制还不完全清楚。发生上皮-间质转化(EMT)的乳腺癌细胞具有侵袭性和迁移性。细胞因子转化生长因子β1(TGFβ1)是EMT的强效诱导因子,其过表达经常在肿瘤微环境中被检测到,并与侵袭和淋巴转移相关。最近,我们报道了 TGFβ1 通过 CCR7/CCL21 介导的趋化作用刺激具有间充质特性的乳腺癌细胞向淋巴系统定向迁移,这与炎症过程中的树突状细胞类似。在此,我们旨在找出可能参与引导乳腺癌细胞通过淋巴系统的其他趋化因子和相应受体。通过结合 RNA 测序分析、数据库筛选和侵袭试验,我们确定了 IL7/IL7R 和 IL15/IL15R 这对趋化因子和受体,它们在促进具有间质特性的乳腺癌细胞向淋巴管的趋化迁移中具有潜在作用。研究结果表明,TGFβ1 有能力协调肿瘤细胞和淋巴内皮细胞之间的串联,因此有必要进一步研究 IL7 和 IL15 在促进乳腺癌淋巴转移中的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
TGFß1 Stimulates Lymphatic Endothelial Cells to Produce IL7 and IL15, Which Act as Chemotactic Factors for Breast Cancer Cells with Mesenchymal Properties.

The lymphatic system is a major gateway for tumor cell dissemination but the mechanisms of how tumor cells gain access to lymphatic vessels are not completely understood. Breast cancer cells undergoing epithelial-mesenchymal transition (EMT) gain invasive and migratory properties. Overexpression of the cytokine transforming growth factor β1 (TGFβ1), a potent inducer of EMT, is frequently detected in the tumor microenvironment and correlates with invasion and lymph metastasis. Recently, we reported that TGFβ1 stimulated breast cancer cells with mesenchymal properties to migrate in a targeted fashion towards the lymphatic system via CCR7/CCL21-mediated chemotaxis, similar to dendritic cells during inflammation. Here, we aimed to identify additional chemotactic factors and corresponding receptors that could be involved in guiding breast cancer cells through the lymphatic system. Through a combination of RNA sequencing analysis, database screening and invasion assays we identified IL7/IL7R and IL15/IL15R as pairs of chemokines and receptors with potential roles in promoting chemotactic migration of breast cancer cells with mesenchymal properties towards the lymphatics. The results demonstrate the capacity of TGFβ1 to orchestrate crosstalk between tumor cells and lymphatic endothelial cells and warrant further studies to explore the roles of IL7 and IL15 in promoting lymph metastasis of breast cancer.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Mammary Gland Biology and Neoplasia
Journal of Mammary Gland Biology and Neoplasia 医学-内分泌学与代谢
CiteScore
5.30
自引率
4.00%
发文量
22
期刊介绍: Journal of Mammary Gland Biology and Neoplasia is the leading Journal in the field of mammary gland biology that provides researchers within and outside the field of mammary gland biology with an integrated source of information pertaining to the development, function, and pathology of the mammary gland and its function. Commencing in 2015, the Journal will begin receiving and publishing a combination of reviews and original, peer-reviewed research. The Journal covers all topics related to the field of mammary gland biology, including mammary development, breast cancer biology, lactation, and milk composition and quality. The environmental, endocrine, nutritional, and molecular factors regulating these processes is covered, including from a comparative biology perspective.
期刊最新文献
Immune Cell Contribution to Mammary Gland Development. Perimenopausal and Menopausal Mammary Glands In A 4-Vinylcyclohexene Diepoxide Mouse Model. State of the Art Modelling of the Breast Cancer Metastatic Microenvironment: Where Are We? Transcriptomic Analysis of Pubertal and Adult Virgin Mouse Mammary Epithelial and Stromal Cell Populations. Rat Models of Hormone Receptor-Positive Breast Cancer.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1