同步荧光光谱法同时测定杜维力和莫西沙星的开发与验证:绿色度量评估及在大鼠药代动力学研究中的应用。

IF 2.4 3区 化学 Q3 CHEMISTRY, ANALYTICAL Methods and Applications in Fluorescence Pub Date : 2023-12-13 DOI:10.1088/2050-6120/ad1249
Weam M Othman, Nourah Z Al-Zoman, Ibrahim A Darwish, Aliyah Almomen, Nehal F Farid, Fatma F Abdallah, Samah S Saad
{"title":"同步荧光光谱法同时测定杜维力和莫西沙星的开发与验证:绿色度量评估及在大鼠药代动力学研究中的应用。","authors":"Weam M Othman, Nourah Z Al-Zoman, Ibrahim A Darwish, Aliyah Almomen, Nehal F Farid, Fatma F Abdallah, Samah S Saad","doi":"10.1088/2050-6120/ad1249","DOIUrl":null,"url":null,"abstract":"<p><p>Duvelisib (DUV) is a potent anticancer drug whereas Moxifloxacin (MOX) is an antimicrobial drug with anti-proliferative potency against cancerous cells, which is empirically administered in cancer treatment. DUV and MOX combination is commonly prescribed to combat infections in patients while they are under chemotherapy treatment. This study describes, for the first time, the development of a simple and green synchronous spectrofluorimetric (SSF) method for the simultaneous estimation of DUV and MOX in plasma. DUV and MOX were quantified at 273 and 362 nm, respectively without interference between each other at Δ<i>λ</i>of 120 nm. The experimental variables influencing fluorescence intensities were thoroughly investigated and the optimum conditions were established. At pH 3.5, the optimum synchronous fluorescence intensity (SFI) was achieved in water solvent by using sodium acetate buffer solution. Calibration curves for DUV and MOX, correlating the SFI with the corresponding drug concentration, were linear in the range of 50-1000 ng mL<sup>-1</sup>for both drugs, with good correlation coefficients. The method was extremely sensitive, with limits of detection of 24 and 22 ng mL<sup>-1</sup>, and limits of quantitation of 40 and 45 ngmL<sup>-1</sup>for DUV and MOX, respectively. The SSF method was validated according to the Food and Drug Administration (FDA) guidelines for validation of analytical procedures, and the validation parameters were acceptable. The proposed SSF method was applied to the pharmacokinetic and bioavailability studies in rats' plasma after single concurrent oral administration of both drugs. The results of the study revealed that caution should be taken with DUV dose when concurrently administered with MOX. The greenness of SSF method was assessed by three different metric tools namely Analytical Eco-scale, Green Analytical Procedure Index, and Analytical Greenness Calculator. The results confirmed that SSF method is an eco-friendly and green analytical approach. In conclusion, the proposed SSF method is a valuable tool for pharmacokinetic/bioavailability studies and therapeutic drug monitoring of simultaneously administered DUV and MOX.</p>","PeriodicalId":18596,"journal":{"name":"Methods and Applications in Fluorescence","volume":" ","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2023-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development and validation of synchronous spectrofluorimetric method for the simultaneous determination of duvelisib and moxifloxacin: greenness metric assessment and application to a pharmacokinetic study in rats.\",\"authors\":\"Weam M Othman, Nourah Z Al-Zoman, Ibrahim A Darwish, Aliyah Almomen, Nehal F Farid, Fatma F Abdallah, Samah S Saad\",\"doi\":\"10.1088/2050-6120/ad1249\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Duvelisib (DUV) is a potent anticancer drug whereas Moxifloxacin (MOX) is an antimicrobial drug with anti-proliferative potency against cancerous cells, which is empirically administered in cancer treatment. DUV and MOX combination is commonly prescribed to combat infections in patients while they are under chemotherapy treatment. This study describes, for the first time, the development of a simple and green synchronous spectrofluorimetric (SSF) method for the simultaneous estimation of DUV and MOX in plasma. DUV and MOX were quantified at 273 and 362 nm, respectively without interference between each other at Δ<i>λ</i>of 120 nm. The experimental variables influencing fluorescence intensities were thoroughly investigated and the optimum conditions were established. At pH 3.5, the optimum synchronous fluorescence intensity (SFI) was achieved in water solvent by using sodium acetate buffer solution. Calibration curves for DUV and MOX, correlating the SFI with the corresponding drug concentration, were linear in the range of 50-1000 ng mL<sup>-1</sup>for both drugs, with good correlation coefficients. The method was extremely sensitive, with limits of detection of 24 and 22 ng mL<sup>-1</sup>, and limits of quantitation of 40 and 45 ngmL<sup>-1</sup>for DUV and MOX, respectively. The SSF method was validated according to the Food and Drug Administration (FDA) guidelines for validation of analytical procedures, and the validation parameters were acceptable. The proposed SSF method was applied to the pharmacokinetic and bioavailability studies in rats' plasma after single concurrent oral administration of both drugs. The results of the study revealed that caution should be taken with DUV dose when concurrently administered with MOX. The greenness of SSF method was assessed by three different metric tools namely Analytical Eco-scale, Green Analytical Procedure Index, and Analytical Greenness Calculator. The results confirmed that SSF method is an eco-friendly and green analytical approach. In conclusion, the proposed SSF method is a valuable tool for pharmacokinetic/bioavailability studies and therapeutic drug monitoring of simultaneously administered DUV and MOX.</p>\",\"PeriodicalId\":18596,\"journal\":{\"name\":\"Methods and Applications in Fluorescence\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2023-12-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Methods and Applications in Fluorescence\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1088/2050-6120/ad1249\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Methods and Applications in Fluorescence","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1088/2050-6120/ad1249","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

摘要

杜维力(DUV)是一种强效抗癌药物,而莫西沙星(MOX)是一种抗菌药物,对癌细胞具有抗增殖作用,在癌症治疗中被经验性地使用。DUV和MOX联合用药通常用于化疗患者的抗感染治疗。本研究首次开发了一种简单、绿色的同步分光荧光法(SSF),用于同时估算血浆中的 DUV 和 MOX。DUV 和 MOX 分别在 273 纳米和 362 纳米波长下进行定量,在 120 纳米的 Δλ 波长下互不干扰。对影响荧光强度的实验变量进行了深入研究,并确定了最佳条件。在 pH 值为 3.5 时,使用醋酸钠缓冲溶液在水溶剂中达到了最佳同步荧光强度(SFI)。DUV和MOX的校准曲线将SFI与相应的药物浓度相关联,两种药物在50-1000 ng mL-1范围内呈线性关系,相关系数良好。该方法灵敏度极高,DUV 和 MOX 的检出限分别为 24 和 22 ng mL-1,定量限分别为 40 和 45 ngmL-1。根据食品和药物管理局(FDA)的分析程序验证指南,对 SSF 方法进行了验证,验证参数合格。将所建立的SSF方法应用于大鼠单次同时口服两种药物后的血浆药代动力学和生物利用度研究。研究结果表明,DUV与MOX同时给药时剂量应谨慎。通过三种不同的度量工具,即分析生态尺度、绿色分析程序指数和分析绿色度计算器,对 SSF 方法的绿色度进行了评估。结果证实 SSF 方法是一种生态友好型绿色分析方法。总之,所提出的 SSF 方法是同时给药 DUV 和 MOX 的药代动力学/生物利用度研究和治疗药物监测的重要工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Development and validation of synchronous spectrofluorimetric method for the simultaneous determination of duvelisib and moxifloxacin: greenness metric assessment and application to a pharmacokinetic study in rats.

Duvelisib (DUV) is a potent anticancer drug whereas Moxifloxacin (MOX) is an antimicrobial drug with anti-proliferative potency against cancerous cells, which is empirically administered in cancer treatment. DUV and MOX combination is commonly prescribed to combat infections in patients while they are under chemotherapy treatment. This study describes, for the first time, the development of a simple and green synchronous spectrofluorimetric (SSF) method for the simultaneous estimation of DUV and MOX in plasma. DUV and MOX were quantified at 273 and 362 nm, respectively without interference between each other at Δλof 120 nm. The experimental variables influencing fluorescence intensities were thoroughly investigated and the optimum conditions were established. At pH 3.5, the optimum synchronous fluorescence intensity (SFI) was achieved in water solvent by using sodium acetate buffer solution. Calibration curves for DUV and MOX, correlating the SFI with the corresponding drug concentration, were linear in the range of 50-1000 ng mL-1for both drugs, with good correlation coefficients. The method was extremely sensitive, with limits of detection of 24 and 22 ng mL-1, and limits of quantitation of 40 and 45 ngmL-1for DUV and MOX, respectively. The SSF method was validated according to the Food and Drug Administration (FDA) guidelines for validation of analytical procedures, and the validation parameters were acceptable. The proposed SSF method was applied to the pharmacokinetic and bioavailability studies in rats' plasma after single concurrent oral administration of both drugs. The results of the study revealed that caution should be taken with DUV dose when concurrently administered with MOX. The greenness of SSF method was assessed by three different metric tools namely Analytical Eco-scale, Green Analytical Procedure Index, and Analytical Greenness Calculator. The results confirmed that SSF method is an eco-friendly and green analytical approach. In conclusion, the proposed SSF method is a valuable tool for pharmacokinetic/bioavailability studies and therapeutic drug monitoring of simultaneously administered DUV and MOX.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Methods and Applications in Fluorescence
Methods and Applications in Fluorescence CHEMISTRY, ANALYTICALCHEMISTRY, PHYSICAL&n-CHEMISTRY, PHYSICAL
CiteScore
6.20
自引率
3.10%
发文量
60
期刊介绍: Methods and Applications in Fluorescence focuses on new developments in fluorescence spectroscopy, imaging, microscopy, fluorescent probes, labels and (nano)materials. It will feature both methods and advanced (bio)applications and accepts original research articles, reviews and technical notes.
期刊最新文献
Detection of Antimicrobial-Induced Survival/Dead Bacteria via mEos4b Photoconversion: A Preliminary Study. Naphthylated LEGO-lipophosphonoxin antibiotics used as a fluorescent tool for the observation of target membrane perturbations preceding its disruption. CombiningNitellopsis obtusaautofluorescence intensity and F680/F750 ratio to discriminate responses to environmental stressors. Effect of Mn2+doping and DDAB-assisted postpassivation on the structural and optical properties of CsPb(Cl/Br)3halide perovskite nanocrystals. Effect of molecular crowders on ligand binding kinetics with G-quadruplex DNA probed by fluorescence correlation spectroscopy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1