{"title":"红豆杉可减轻辐照诱发的小鼠睾丸损伤","authors":"Yuanshuai Ran, Nengliang Duan, Zhixiang Gao, Yulong Liu, Xiaolong Liu, Boxin Xue","doi":"10.1080/13510002.2023.2279818","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>The testis is vulnerable to ionizing radiation, sexual dysfunction and male infertility are common problems after local radiation or whole-body exposure. Currently, there are no approved drugs for the prevention or treatment of radiation testicular injury. Sulforaphane (SFN) is an indirect antioxidant that induces phase II detoxification enzymes and antioxidant genes. Herein, we investigated the radiation protective effect of SFN on testicular injury in mice and its potential mechanism.</p><p><strong>Materials and methods: </strong>Mice were randomly divided into blank control group (Ctrl), radiation + no pretreatment group (IR), and radiation + SFN groups (IRS). In the radiation + SFN groups, starting from 72 h before radiation, SFN solution was intraperitoneally injected once a day until they were sacrificed. Mice in the blank control group and the radiation + no pretreatment group were simultaneously injected intraperitoneally with an equal volume of the solvent used to dissolve SFN (PBS with a final concentration of 0.1%DMSO) until they were sacrificed. They were subjected to 6Mev-ray radiation to the lower abdominal testis area (total dose 2Gy). Twenty-four hours after radiation, six mice in each group were randomly sacrificed. Seventy-two hours after radiation, the remaining mice were sacrificed.</p><p><strong>Results: </strong>The results showed that the harmful effects of ionizing radiation on testes were manifested as damage to histoarchitecture, increased oxidative stress, and apoptosis, and thus impaired male fertility. SFN injections can reverse these symptoms.</p><p><strong>Conclusions: </strong>The results showed that SFN can improve the damage of mouse testis caused by irradiation. Furthermore, SFN prevents spermatogenesis dysfunction caused by ionizing radiation by activating Nrf2 and its downstream antioxidant gene.</p>","PeriodicalId":21096,"journal":{"name":"Redox Report","volume":"28 1","pages":"2279818"},"PeriodicalIF":5.2000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11001278/pdf/","citationCount":"0","resultStr":"{\"title\":\"Sulforaphane attenuates irradiation induced testis injury in mice.\",\"authors\":\"Yuanshuai Ran, Nengliang Duan, Zhixiang Gao, Yulong Liu, Xiaolong Liu, Boxin Xue\",\"doi\":\"10.1080/13510002.2023.2279818\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objective: </strong>The testis is vulnerable to ionizing radiation, sexual dysfunction and male infertility are common problems after local radiation or whole-body exposure. Currently, there are no approved drugs for the prevention or treatment of radiation testicular injury. Sulforaphane (SFN) is an indirect antioxidant that induces phase II detoxification enzymes and antioxidant genes. Herein, we investigated the radiation protective effect of SFN on testicular injury in mice and its potential mechanism.</p><p><strong>Materials and methods: </strong>Mice were randomly divided into blank control group (Ctrl), radiation + no pretreatment group (IR), and radiation + SFN groups (IRS). In the radiation + SFN groups, starting from 72 h before radiation, SFN solution was intraperitoneally injected once a day until they were sacrificed. Mice in the blank control group and the radiation + no pretreatment group were simultaneously injected intraperitoneally with an equal volume of the solvent used to dissolve SFN (PBS with a final concentration of 0.1%DMSO) until they were sacrificed. They were subjected to 6Mev-ray radiation to the lower abdominal testis area (total dose 2Gy). Twenty-four hours after radiation, six mice in each group were randomly sacrificed. Seventy-two hours after radiation, the remaining mice were sacrificed.</p><p><strong>Results: </strong>The results showed that the harmful effects of ionizing radiation on testes were manifested as damage to histoarchitecture, increased oxidative stress, and apoptosis, and thus impaired male fertility. SFN injections can reverse these symptoms.</p><p><strong>Conclusions: </strong>The results showed that SFN can improve the damage of mouse testis caused by irradiation. Furthermore, SFN prevents spermatogenesis dysfunction caused by ionizing radiation by activating Nrf2 and its downstream antioxidant gene.</p>\",\"PeriodicalId\":21096,\"journal\":{\"name\":\"Redox Report\",\"volume\":\"28 1\",\"pages\":\"2279818\"},\"PeriodicalIF\":5.2000,\"publicationDate\":\"2023-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11001278/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Redox Report\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1080/13510002.2023.2279818\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/12/5 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Redox Report","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/13510002.2023.2279818","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/12/5 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Sulforaphane attenuates irradiation induced testis injury in mice.
Objective: The testis is vulnerable to ionizing radiation, sexual dysfunction and male infertility are common problems after local radiation or whole-body exposure. Currently, there are no approved drugs for the prevention or treatment of radiation testicular injury. Sulforaphane (SFN) is an indirect antioxidant that induces phase II detoxification enzymes and antioxidant genes. Herein, we investigated the radiation protective effect of SFN on testicular injury in mice and its potential mechanism.
Materials and methods: Mice were randomly divided into blank control group (Ctrl), radiation + no pretreatment group (IR), and radiation + SFN groups (IRS). In the radiation + SFN groups, starting from 72 h before radiation, SFN solution was intraperitoneally injected once a day until they were sacrificed. Mice in the blank control group and the radiation + no pretreatment group were simultaneously injected intraperitoneally with an equal volume of the solvent used to dissolve SFN (PBS with a final concentration of 0.1%DMSO) until they were sacrificed. They were subjected to 6Mev-ray radiation to the lower abdominal testis area (total dose 2Gy). Twenty-four hours after radiation, six mice in each group were randomly sacrificed. Seventy-two hours after radiation, the remaining mice were sacrificed.
Results: The results showed that the harmful effects of ionizing radiation on testes were manifested as damage to histoarchitecture, increased oxidative stress, and apoptosis, and thus impaired male fertility. SFN injections can reverse these symptoms.
Conclusions: The results showed that SFN can improve the damage of mouse testis caused by irradiation. Furthermore, SFN prevents spermatogenesis dysfunction caused by ionizing radiation by activating Nrf2 and its downstream antioxidant gene.
期刊介绍:
Redox Report is a multidisciplinary peer-reviewed open access journal focusing on the role of free radicals, oxidative stress, activated oxygen, perioxidative and redox processes, primarily in the human environment and human pathology. Relevant papers on the animal and plant environment, biology and pathology will also be included.
While emphasis is placed upon methodological and intellectual advances underpinned by new data, the journal offers scope for review, hypotheses, critiques and other forms of discussion.