木材腐朽真菌之间的种内相互作用改变了腐朽率和种间相互作用的动态变化

IF 1.9 3区 环境科学与生态学 Q3 ECOLOGY Fungal Ecology Pub Date : 2023-12-06 DOI:10.1016/j.funeco.2023.101314
Mark T. Banik , Daniel L. Lindner , Michelle A. Jusino (1)
{"title":"木材腐朽真菌之间的种内相互作用改变了腐朽率和种间相互作用的动态变化","authors":"Mark T. Banik ,&nbsp;Daniel L. Lindner ,&nbsp;Michelle A. Jusino (1)","doi":"10.1016/j.funeco.2023.101314","DOIUrl":null,"url":null,"abstract":"<div><p><span>Interactions among wood-decay fungi can have a profound effect on fungal community composition, decay rates and ultimately the chemical composition of the material remaining after the decay process. Interspecific interactions among fungi as they decay wood have been well-studied but almost nothing is known about the effect of intraspecific interactions between individual genets on the decay process. In this study we examine the effect of both intra- and interspecific competition on wood mass-loss for five species of wood-decay fungi: </span><span><em>Cerrena unicolor</em></span>, <em>Fuscoporia gilva</em>, <span><em>Irpex lacteus</em></span>, <span><em>Stereum</em><span><em> </em><em>ostrea</em></span></span> and <span><em>Trametes versicolor</em></span><span>. Four of the five species studied showed a significant increase in mass loss when five individual isolates (genets) of the same species simultaneously colonized aspen test wafers </span><em>in vitro</em>. The dynamics of interspecific interactions were also significantly impacted by the presence of multiple genets of each species. Taken together, these results demonstrate that intraspecific interactions can change the outcome of interspecific interactions and thus the functioning of the overall community.</p></div>","PeriodicalId":55136,"journal":{"name":"Fungal Ecology","volume":"68 ","pages":"Article 101314"},"PeriodicalIF":1.9000,"publicationDate":"2023-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Intraspecific interactions among wood-decay fungi alter decay rates and dynamics of interspecific interactions\",\"authors\":\"Mark T. Banik ,&nbsp;Daniel L. Lindner ,&nbsp;Michelle A. Jusino (1)\",\"doi\":\"10.1016/j.funeco.2023.101314\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>Interactions among wood-decay fungi can have a profound effect on fungal community composition, decay rates and ultimately the chemical composition of the material remaining after the decay process. Interspecific interactions among fungi as they decay wood have been well-studied but almost nothing is known about the effect of intraspecific interactions between individual genets on the decay process. In this study we examine the effect of both intra- and interspecific competition on wood mass-loss for five species of wood-decay fungi: </span><span><em>Cerrena unicolor</em></span>, <em>Fuscoporia gilva</em>, <span><em>Irpex lacteus</em></span>, <span><em>Stereum</em><span><em> </em><em>ostrea</em></span></span> and <span><em>Trametes versicolor</em></span><span>. Four of the five species studied showed a significant increase in mass loss when five individual isolates (genets) of the same species simultaneously colonized aspen test wafers </span><em>in vitro</em>. The dynamics of interspecific interactions were also significantly impacted by the presence of multiple genets of each species. Taken together, these results demonstrate that intraspecific interactions can change the outcome of interspecific interactions and thus the functioning of the overall community.</p></div>\",\"PeriodicalId\":55136,\"journal\":{\"name\":\"Fungal Ecology\",\"volume\":\"68 \",\"pages\":\"Article 101314\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-12-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fungal Ecology\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1754504823000910\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fungal Ecology","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1754504823000910","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

木材腐朽真菌之间的相互作用会对真菌群落组成、腐朽速度以及最终腐朽过程后剩余物质的化学成分产生深远影响。真菌在木材腐朽过程中的种间相互作用已经得到了很好的研究,但对于单个基因之间的种内相互作用对腐朽过程的影响几乎一无所知。在这项研究中,我们研究了五种木材腐朽真菌种内和种间竞争对木材质量损失的影响:这五种木材腐朽真菌是:Cerrena unicolor、Fuscoporia gilva、Irpex lacteus、Stereum ostrea 和 Trametes versicolor。所研究的五个菌种中,有四个菌种在同一菌种的五个单个分离物(基因组)同时体外定殖杨树试片时,质量损失显著增加。种间相互作用的动态也受到每个物种多个基因组存在的显著影响。总之,这些结果表明,种内相互作用会改变种间相互作用的结果,从而改变整个群落的功能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Intraspecific interactions among wood-decay fungi alter decay rates and dynamics of interspecific interactions

Interactions among wood-decay fungi can have a profound effect on fungal community composition, decay rates and ultimately the chemical composition of the material remaining after the decay process. Interspecific interactions among fungi as they decay wood have been well-studied but almost nothing is known about the effect of intraspecific interactions between individual genets on the decay process. In this study we examine the effect of both intra- and interspecific competition on wood mass-loss for five species of wood-decay fungi: Cerrena unicolor, Fuscoporia gilva, Irpex lacteus, Stereum ostrea and Trametes versicolor. Four of the five species studied showed a significant increase in mass loss when five individual isolates (genets) of the same species simultaneously colonized aspen test wafers in vitro. The dynamics of interspecific interactions were also significantly impacted by the presence of multiple genets of each species. Taken together, these results demonstrate that intraspecific interactions can change the outcome of interspecific interactions and thus the functioning of the overall community.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Fungal Ecology
Fungal Ecology 环境科学-生态学
CiteScore
5.80
自引率
3.40%
发文量
51
审稿时长
3 months
期刊介绍: Fungal Ecology publishes investigations into all aspects of fungal ecology, including the following (not exclusive): population dynamics; adaptation; evolution; role in ecosystem functioning, nutrient cycling, decomposition, carbon allocation; ecophysiology; intra- and inter-specific mycelial interactions, fungus-plant (pathogens, mycorrhizas, lichens, endophytes), fungus-invertebrate and fungus-microbe interaction; genomics and (evolutionary) genetics; conservation and biodiversity; remote sensing; bioremediation and biodegradation; quantitative and computational aspects - modelling, indicators, complexity, informatics. The usual prerequisites for publication will be originality, clarity, and significance as relevant to a better understanding of the ecology of fungi.
期刊最新文献
Michigan winter wheat (Triticum aestivum L.) roots host communities of Mortierellaceae and endohyphal bacteria Influence of Batrachochytrium dendrobatidis isolate and dose on infection outcomes in a critically endangered Australian amphibian Bidirectional interactions between Grosmannia abietina and hybrid white spruce: Pathogenicity, monoterpene defense responses, and fungal growth and reproduction Editorial Board Nitrogen and phosphorus additions affect fruiting of ectomycorrhizal fungi in a temperate hardwood forest
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1