异方差单向 FMANOVA 全局检验及其应用

Pub Date : 2023-12-05 DOI:10.1016/j.jspi.2023.106133
Tianming Zhu , Jin-Ting Zhang , Ming-Yen Cheng
{"title":"异方差单向 FMANOVA 全局检验及其应用","authors":"Tianming Zhu ,&nbsp;Jin-Ting Zhang ,&nbsp;Ming-Yen Cheng","doi":"10.1016/j.jspi.2023.106133","DOIUrl":null,"url":null,"abstract":"<div><p><span><span>Multivariate functional data are prevalent in various fields such as biology, climatology, and finance. Motivated by the World Health Data applications, in this study, we propose and examine a global test for assessing the equality of multiple mean functions in multivariate functional data. This test addresses the one-way Functional Multivariate Analysis of Variance<span> (FMANOVA) problem, which is a fundamental issue in the analysis of multivariate functional data. While numerous analysis of variance tests have been proposed and studied for univariate functional data, only a limited number of methods have been developed for the one-way FMANOVA problem. Furthermore, our global test has the ability to handle heteroscedasticity<span> in the unknown covariance function matrices that underlie the multivariate functional data, which is not possible with existing methods. We establish the asymptotic </span></span></span>null distribution of the test statistic as a chi-squared-type mixture, which depends on the eigenvalues of the covariance function matrices. To approximate the null distribution, we introduce a Welch–Satterthwaite type chi-squared-approximation with consistent parameter estimation. The proposed test exhibits root-</span><span><math><mi>n</mi></math></span> consistency, meaning it possesses nontrivial power against a local alternative. Additionally, it offers superior computational efficiency compared to several permutation-based tests. Through simulation studies and applications to the World Health Data, we highlight the advantages of our global test.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A global test for heteroscedastic one-way FMANOVA with applications\",\"authors\":\"Tianming Zhu ,&nbsp;Jin-Ting Zhang ,&nbsp;Ming-Yen Cheng\",\"doi\":\"10.1016/j.jspi.2023.106133\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span><span>Multivariate functional data are prevalent in various fields such as biology, climatology, and finance. Motivated by the World Health Data applications, in this study, we propose and examine a global test for assessing the equality of multiple mean functions in multivariate functional data. This test addresses the one-way Functional Multivariate Analysis of Variance<span> (FMANOVA) problem, which is a fundamental issue in the analysis of multivariate functional data. While numerous analysis of variance tests have been proposed and studied for univariate functional data, only a limited number of methods have been developed for the one-way FMANOVA problem. Furthermore, our global test has the ability to handle heteroscedasticity<span> in the unknown covariance function matrices that underlie the multivariate functional data, which is not possible with existing methods. We establish the asymptotic </span></span></span>null distribution of the test statistic as a chi-squared-type mixture, which depends on the eigenvalues of the covariance function matrices. To approximate the null distribution, we introduce a Welch–Satterthwaite type chi-squared-approximation with consistent parameter estimation. The proposed test exhibits root-</span><span><math><mi>n</mi></math></span> consistency, meaning it possesses nontrivial power against a local alternative. Additionally, it offers superior computational efficiency compared to several permutation-based tests. Through simulation studies and applications to the World Health Data, we highlight the advantages of our global test.</p></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-12-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0378375823001027\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378375823001027","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

多元函数数据普遍存在于生物学、气候学和金融学等多个领域。受世界卫生数据应用的启发,在本研究中,我们提出并研究了一种用于评估多元函数数据中多个均值函数相等性的全局检验。该检验解决了单向函数多元方差分析(FMANOVA)问题,这是多元函数数据分析中的一个基本问题。虽然针对单变量函数数据提出并研究了许多方差分析检验方法,但针对单向 FMANOVA 问题开发的方法数量有限。此外,我们的全局检验能够处理多元函数数据未知协方差函数矩阵中的异方差,这是现有方法无法做到的。我们将检验统计量的渐近零分布确定为一个奇平方型混合物,它取决于协方差函数矩阵的特征值。为了近似 null 分布,我们引入了具有一致参数估计的 Welch-Satterthwaite 型奇平方近似。所提出的检验具有根 n 一致性,这意味着它对局部替代方案具有非同一般的威力。此外,与几种基于置换的检验相比,它还具有更高的计算效率。通过模拟研究和在世界健康数据中的应用,我们强调了全局检验的优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
A global test for heteroscedastic one-way FMANOVA with applications

Multivariate functional data are prevalent in various fields such as biology, climatology, and finance. Motivated by the World Health Data applications, in this study, we propose and examine a global test for assessing the equality of multiple mean functions in multivariate functional data. This test addresses the one-way Functional Multivariate Analysis of Variance (FMANOVA) problem, which is a fundamental issue in the analysis of multivariate functional data. While numerous analysis of variance tests have been proposed and studied for univariate functional data, only a limited number of methods have been developed for the one-way FMANOVA problem. Furthermore, our global test has the ability to handle heteroscedasticity in the unknown covariance function matrices that underlie the multivariate functional data, which is not possible with existing methods. We establish the asymptotic null distribution of the test statistic as a chi-squared-type mixture, which depends on the eigenvalues of the covariance function matrices. To approximate the null distribution, we introduce a Welch–Satterthwaite type chi-squared-approximation with consistent parameter estimation. The proposed test exhibits root-n consistency, meaning it possesses nontrivial power against a local alternative. Additionally, it offers superior computational efficiency compared to several permutation-based tests. Through simulation studies and applications to the World Health Data, we highlight the advantages of our global test.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1