Weinan Guan , Guoqing Chen , Zichen Yang , Taiqun Yang , Chaoqun Ma , Lei Li , Hui Gao , Chun Zhu , Zichen Cai , Yan Zhou , Wei Zhang , Xin Li
{"title":"基于羟基官能化 Ag@COF SERS 基底的茶饮料中三叶皂苷的灵敏检测","authors":"Weinan Guan , Guoqing Chen , Zichen Yang , Taiqun Yang , Chaoqun Ma , Lei Li , Hui Gao , Chun Zhu , Zichen Cai , Yan Zhou , Wei Zhang , Xin Li","doi":"10.1016/j.vibspec.2023.103623","DOIUrl":null,"url":null,"abstract":"<div><p>As a dihydrochalcone natural sweetener extracted from <em>Lithocarpus litseifolius</em>, trilobatin is an emerging functional sweetener in the international arena in recent years and is gaining attention in the food industry. The detection of trilobatin has also gradually received the attention of researchers, however, the detection means for trilobatin still remain in the traditional high performance liquid chromatography (HPLC) and other traditional methods, which are costly and have a large detection range. In this work, a method based on the principle of surface-enhanced Raman (SERS) using a composite substrate of silver nanoparticles (Ag NPs) and covalent organic frameworks (COFs) materials is proposed for the detection of trilobatin in tea beverages. After Gaussian simulation and a series of spectral analysis methods for validation, the functionalized SERS substrates contain abundant hydroxyl groups on the surface, which can be combined with trilobatin through hydrogen bonding and greatly enhance the Raman signal of trilobatin. The specific detection of trilobatin in tea beverages has been realized and the problem of weak SERS signal of trilobatin in liquid environment has been solved. The limit of detection (LOD) of trilobatin in tea beverage was 2.8 nM, and the correlation coefficient (R<sup>2</sup>) was 0.995. The recoveries were in the range of 100.6∼106.0% with the RSD of 1.756∼4.921%. In conclusion, the experimental method is highly sensitive and specific, and can realize the nondestructive detection of trilobatin in samples with high practical value.</p></div>","PeriodicalId":23656,"journal":{"name":"Vibrational Spectroscopy","volume":"130 ","pages":"Article 103623"},"PeriodicalIF":2.7000,"publicationDate":"2023-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0924203123001303/pdfft?md5=6f11c4cad0d2beecd050208c33125f12&pid=1-s2.0-S0924203123001303-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Sensitive detection of trilobatin in tea beverages based on hydroxy-functionalized Ag@COF SERS substrate\",\"authors\":\"Weinan Guan , Guoqing Chen , Zichen Yang , Taiqun Yang , Chaoqun Ma , Lei Li , Hui Gao , Chun Zhu , Zichen Cai , Yan Zhou , Wei Zhang , Xin Li\",\"doi\":\"10.1016/j.vibspec.2023.103623\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>As a dihydrochalcone natural sweetener extracted from <em>Lithocarpus litseifolius</em>, trilobatin is an emerging functional sweetener in the international arena in recent years and is gaining attention in the food industry. The detection of trilobatin has also gradually received the attention of researchers, however, the detection means for trilobatin still remain in the traditional high performance liquid chromatography (HPLC) and other traditional methods, which are costly and have a large detection range. In this work, a method based on the principle of surface-enhanced Raman (SERS) using a composite substrate of silver nanoparticles (Ag NPs) and covalent organic frameworks (COFs) materials is proposed for the detection of trilobatin in tea beverages. After Gaussian simulation and a series of spectral analysis methods for validation, the functionalized SERS substrates contain abundant hydroxyl groups on the surface, which can be combined with trilobatin through hydrogen bonding and greatly enhance the Raman signal of trilobatin. The specific detection of trilobatin in tea beverages has been realized and the problem of weak SERS signal of trilobatin in liquid environment has been solved. The limit of detection (LOD) of trilobatin in tea beverage was 2.8 nM, and the correlation coefficient (R<sup>2</sup>) was 0.995. The recoveries were in the range of 100.6∼106.0% with the RSD of 1.756∼4.921%. In conclusion, the experimental method is highly sensitive and specific, and can realize the nondestructive detection of trilobatin in samples with high practical value.</p></div>\",\"PeriodicalId\":23656,\"journal\":{\"name\":\"Vibrational Spectroscopy\",\"volume\":\"130 \",\"pages\":\"Article 103623\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2023-11-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0924203123001303/pdfft?md5=6f11c4cad0d2beecd050208c33125f12&pid=1-s2.0-S0924203123001303-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Vibrational Spectroscopy\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0924203123001303\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vibrational Spectroscopy","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0924203123001303","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
Sensitive detection of trilobatin in tea beverages based on hydroxy-functionalized Ag@COF SERS substrate
As a dihydrochalcone natural sweetener extracted from Lithocarpus litseifolius, trilobatin is an emerging functional sweetener in the international arena in recent years and is gaining attention in the food industry. The detection of trilobatin has also gradually received the attention of researchers, however, the detection means for trilobatin still remain in the traditional high performance liquid chromatography (HPLC) and other traditional methods, which are costly and have a large detection range. In this work, a method based on the principle of surface-enhanced Raman (SERS) using a composite substrate of silver nanoparticles (Ag NPs) and covalent organic frameworks (COFs) materials is proposed for the detection of trilobatin in tea beverages. After Gaussian simulation and a series of spectral analysis methods for validation, the functionalized SERS substrates contain abundant hydroxyl groups on the surface, which can be combined with trilobatin through hydrogen bonding and greatly enhance the Raman signal of trilobatin. The specific detection of trilobatin in tea beverages has been realized and the problem of weak SERS signal of trilobatin in liquid environment has been solved. The limit of detection (LOD) of trilobatin in tea beverage was 2.8 nM, and the correlation coefficient (R2) was 0.995. The recoveries were in the range of 100.6∼106.0% with the RSD of 1.756∼4.921%. In conclusion, the experimental method is highly sensitive and specific, and can realize the nondestructive detection of trilobatin in samples with high practical value.
期刊介绍:
Vibrational Spectroscopy provides a vehicle for the publication of original research that focuses on vibrational spectroscopy. This covers infrared, near-infrared and Raman spectroscopies and publishes papers dealing with developments in applications, theory, techniques and instrumentation.
The topics covered by the journal include:
Sampling techniques,
Vibrational spectroscopy coupled with separation techniques,
Instrumentation (Fourier transform, conventional and laser based),
Data manipulation,
Spectra-structure correlation and group frequencies.
The application areas covered include:
Analytical chemistry,
Bio-organic and bio-inorganic chemistry,
Organic chemistry,
Inorganic chemistry,
Catalysis,
Environmental science,
Industrial chemistry,
Materials science,
Physical chemistry,
Polymer science,
Process control,
Specialized problem solving.