检查关键属性对硬盘故障时间的影响:左截和右截半竞争风险数据的多状态模型

IF 1.3 4区 数学 Q3 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS Applied Stochastic Models in Business and Industry Pub Date : 2023-12-03 DOI:10.1002/asmb.2829
Jordan L. Oakley, Matthew Forshaw, Pete Philipson, Kevin J. Wilson
{"title":"检查关键属性对硬盘故障时间的影响:左截和右截半竞争风险数据的多状态模型","authors":"Jordan L. Oakley,&nbsp;Matthew Forshaw,&nbsp;Pete Philipson,&nbsp;Kevin J. Wilson","doi":"10.1002/asmb.2829","DOIUrl":null,"url":null,"abstract":"<p>The ability to predict failures in hard disk drives (HDDs) is a major objective of HDD manufacturers since avoiding unexpected failures may prevent data loss, improve service reliability, and reduce data center downtime. Most HDDs are equipped with a threshold-based monitoring system named self-monitoring, analysis and reporting technology (SMART). The system collects several performance metrics, called SMART attributes, and detects anomalies that may indicate incipient failures. SMART works as a nascent failure detection method and does not estimate the HDDs' remaining useful life. We define critical attributes and critical states for hard drives using SMART attributes and fit multi-state models to the resulting semi-competing risks data. The multi-state models provide a coherent and novel way to model the failure time of a hard drive and allow us to examine the impact of critical attributes on the failure time of a hard drive. We derive dynamic predictions of conditional survival probabilities, which are adaptive to the state of the drive. Using a dataset of HDDs equipped with SMART, we find that drives are more likely to fail after entering critical states. We evaluate the predictive accuracy of the proposed models with a case study of HDDs equipped with SMART, using the time-dependent area under the receiver operating characteristic curve (AUC) and the expected prediction error (PE). The results suggest that accounting for changes in the critical attributes improves the accuracy of dynamic predictions.</p>","PeriodicalId":55495,"journal":{"name":"Applied Stochastic Models in Business and Industry","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2023-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/asmb.2829","citationCount":"0","resultStr":"{\"title\":\"Examining the impact of critical attributes on hard drive failure times: Multi-state models for left-truncated and right-censored semi-competing risks data\",\"authors\":\"Jordan L. Oakley,&nbsp;Matthew Forshaw,&nbsp;Pete Philipson,&nbsp;Kevin J. Wilson\",\"doi\":\"10.1002/asmb.2829\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The ability to predict failures in hard disk drives (HDDs) is a major objective of HDD manufacturers since avoiding unexpected failures may prevent data loss, improve service reliability, and reduce data center downtime. Most HDDs are equipped with a threshold-based monitoring system named self-monitoring, analysis and reporting technology (SMART). The system collects several performance metrics, called SMART attributes, and detects anomalies that may indicate incipient failures. SMART works as a nascent failure detection method and does not estimate the HDDs' remaining useful life. We define critical attributes and critical states for hard drives using SMART attributes and fit multi-state models to the resulting semi-competing risks data. The multi-state models provide a coherent and novel way to model the failure time of a hard drive and allow us to examine the impact of critical attributes on the failure time of a hard drive. We derive dynamic predictions of conditional survival probabilities, which are adaptive to the state of the drive. Using a dataset of HDDs equipped with SMART, we find that drives are more likely to fail after entering critical states. We evaluate the predictive accuracy of the proposed models with a case study of HDDs equipped with SMART, using the time-dependent area under the receiver operating characteristic curve (AUC) and the expected prediction error (PE). The results suggest that accounting for changes in the critical attributes improves the accuracy of dynamic predictions.</p>\",\"PeriodicalId\":55495,\"journal\":{\"name\":\"Applied Stochastic Models in Business and Industry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-12-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/asmb.2829\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Stochastic Models in Business and Industry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/asmb.2829\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Stochastic Models in Business and Industry","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/asmb.2829","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

预测硬盘驱动器(HDD)故障的能力是HDD制造商的主要目标,因为避免意外故障可以防止数据丢失,提高服务可靠性,并减少数据中心停机时间。大多数硬盘都配备了一个基于阈值的监测系统,称为自我监测、分析和报告技术(SMART)。系统收集多个性能指标,称为SMART属性,并检测可能表明早期故障的异常情况。SMART作为一种新兴的故障检测方法,并不估算硬盘的剩余使用寿命。我们使用SMART属性定义硬盘驱动器的关键属性和关键状态,并将多状态模型拟合到得到的半竞争风险数据中。多状态模型提供了一种连贯和新颖的方法来模拟硬盘驱动器的故障时间,并允许我们检查关键属性对硬盘驱动器故障时间的影响。我们得到了条件生存概率的动态预测,这是适应驱动器的状态。使用配备SMART的hdd数据集,我们发现驱动器在进入关键状态后更有可能发生故障。我们以配备SMART的hdd为例,利用接收机工作特性曲线下的时间依赖面积(AUC)和预期预测误差(PE)来评估所提出模型的预测精度。结果表明,考虑关键属性的变化可以提高动态预测的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Examining the impact of critical attributes on hard drive failure times: Multi-state models for left-truncated and right-censored semi-competing risks data

The ability to predict failures in hard disk drives (HDDs) is a major objective of HDD manufacturers since avoiding unexpected failures may prevent data loss, improve service reliability, and reduce data center downtime. Most HDDs are equipped with a threshold-based monitoring system named self-monitoring, analysis and reporting technology (SMART). The system collects several performance metrics, called SMART attributes, and detects anomalies that may indicate incipient failures. SMART works as a nascent failure detection method and does not estimate the HDDs' remaining useful life. We define critical attributes and critical states for hard drives using SMART attributes and fit multi-state models to the resulting semi-competing risks data. The multi-state models provide a coherent and novel way to model the failure time of a hard drive and allow us to examine the impact of critical attributes on the failure time of a hard drive. We derive dynamic predictions of conditional survival probabilities, which are adaptive to the state of the drive. Using a dataset of HDDs equipped with SMART, we find that drives are more likely to fail after entering critical states. We evaluate the predictive accuracy of the proposed models with a case study of HDDs equipped with SMART, using the time-dependent area under the receiver operating characteristic curve (AUC) and the expected prediction error (PE). The results suggest that accounting for changes in the critical attributes improves the accuracy of dynamic predictions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.70
自引率
0.00%
发文量
67
审稿时长
>12 weeks
期刊介绍: ASMBI - Applied Stochastic Models in Business and Industry (formerly Applied Stochastic Models and Data Analysis) was first published in 1985, publishing contributions in the interface between stochastic modelling, data analysis and their applications in business, finance, insurance, management and production. In 2007 ASMBI became the official journal of the International Society for Business and Industrial Statistics (www.isbis.org). The main objective is to publish papers, both technical and practical, presenting new results which solve real-life problems or have great potential in doing so. Mathematical rigour, innovative stochastic modelling and sound applications are the key ingredients of papers to be published, after a very selective review process. The journal is very open to new ideas, like Data Science and Big Data stemming from problems in business and industry or uncertainty quantification in engineering, as well as more traditional ones, like reliability, quality control, design of experiments, managerial processes, supply chains and inventories, insurance, econometrics, financial modelling (provided the papers are related to real problems). The journal is interested also in papers addressing the effects of business and industrial decisions on the environment, healthcare, social life. State-of-the art computational methods are very welcome as well, when combined with sound applications and innovative models.
期刊最新文献
Issue Information Foreword to the Special Issue on Mathematical Methods in Reliability (MMR23) Limiting Behavior of Mixed Coherent Systems With Lévy-Frailty Marshall–Olkin Failure Times Pricing Cyber Insurance: A Geospatial Statistical Approach Regional Shopping Objectives in British Grocery Retail Transactions Using Segmented Topic Models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1