{"title":"阻燃剂三聚氰胺及分散剂对柔性聚氨酯泡沫塑料力学、热学及发泡性能的影响","authors":"Yu Yeong Jeon, Euy Sik Jeon, Young Shin Kim","doi":"10.1002/fam.3185","DOIUrl":null,"url":null,"abstract":"<p>The objective of this study was to investigate the effect of adding flame-retardant melamine and five different dispersants on the precipitation, foaming, mechanical, and thermal properties of flexible polyurethane foam (FPUF). Precipitation experiments were conducted to analyze the effect of dispersant on the separation of flame retardant and polyol, and the foaming characteristics of polyurethane (PU) foam after adding dispersant were analyzed. The effect of adding a dispersant on mechanical strength was characterized by measuring tensile strength, tearing strength, and hardness, and scanning electron microscopy analysis was performed to analyze morphological characteristics. Thermogravimetric analysis (TGA) was performed to analyze the thermal properties of PU foam. A horizontal flame test, limiting oxygen index test, and cone calorimeter tests were conducted to examine the flame retardancy of PU foam with flame retardant melamine and dispersant added. The dispersant ANTI-TERRA-U is a solution of a salt of unsaturated polyamine amides and low-molecular acidic polyesters. And, the dispersant BYK-220S is a solution of a low molecular weight, unsaturated acidic polycarboxylic acid polyester with a polysiloxane copolymer. The dispersants ANTI-TERRA-U and BYK-220S improved the density, tensile strength, tear strength, and hardness of FPUF. TGA of the top and bottom portions of the foam showed less weight difference for samples containing dispersants, indicating better homogeneity due to improved dispersibility. Therefore, we conclude that dispersants are beneficial additives to improve the mechanical properties and dispersibility of PU foam.</p>","PeriodicalId":12186,"journal":{"name":"Fire and Materials","volume":"48 3","pages":"311-323"},"PeriodicalIF":2.0000,"publicationDate":"2023-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of flame-retardant melamine and dispersants on the mechanical, thermal, and foaming properties of flexible polyurethane foam\",\"authors\":\"Yu Yeong Jeon, Euy Sik Jeon, Young Shin Kim\",\"doi\":\"10.1002/fam.3185\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The objective of this study was to investigate the effect of adding flame-retardant melamine and five different dispersants on the precipitation, foaming, mechanical, and thermal properties of flexible polyurethane foam (FPUF). Precipitation experiments were conducted to analyze the effect of dispersant on the separation of flame retardant and polyol, and the foaming characteristics of polyurethane (PU) foam after adding dispersant were analyzed. The effect of adding a dispersant on mechanical strength was characterized by measuring tensile strength, tearing strength, and hardness, and scanning electron microscopy analysis was performed to analyze morphological characteristics. Thermogravimetric analysis (TGA) was performed to analyze the thermal properties of PU foam. A horizontal flame test, limiting oxygen index test, and cone calorimeter tests were conducted to examine the flame retardancy of PU foam with flame retardant melamine and dispersant added. The dispersant ANTI-TERRA-U is a solution of a salt of unsaturated polyamine amides and low-molecular acidic polyesters. And, the dispersant BYK-220S is a solution of a low molecular weight, unsaturated acidic polycarboxylic acid polyester with a polysiloxane copolymer. The dispersants ANTI-TERRA-U and BYK-220S improved the density, tensile strength, tear strength, and hardness of FPUF. TGA of the top and bottom portions of the foam showed less weight difference for samples containing dispersants, indicating better homogeneity due to improved dispersibility. Therefore, we conclude that dispersants are beneficial additives to improve the mechanical properties and dispersibility of PU foam.</p>\",\"PeriodicalId\":12186,\"journal\":{\"name\":\"Fire and Materials\",\"volume\":\"48 3\",\"pages\":\"311-323\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2023-12-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fire and Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/fam.3185\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fire and Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/fam.3185","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Effect of flame-retardant melamine and dispersants on the mechanical, thermal, and foaming properties of flexible polyurethane foam
The objective of this study was to investigate the effect of adding flame-retardant melamine and five different dispersants on the precipitation, foaming, mechanical, and thermal properties of flexible polyurethane foam (FPUF). Precipitation experiments were conducted to analyze the effect of dispersant on the separation of flame retardant and polyol, and the foaming characteristics of polyurethane (PU) foam after adding dispersant were analyzed. The effect of adding a dispersant on mechanical strength was characterized by measuring tensile strength, tearing strength, and hardness, and scanning electron microscopy analysis was performed to analyze morphological characteristics. Thermogravimetric analysis (TGA) was performed to analyze the thermal properties of PU foam. A horizontal flame test, limiting oxygen index test, and cone calorimeter tests were conducted to examine the flame retardancy of PU foam with flame retardant melamine and dispersant added. The dispersant ANTI-TERRA-U is a solution of a salt of unsaturated polyamine amides and low-molecular acidic polyesters. And, the dispersant BYK-220S is a solution of a low molecular weight, unsaturated acidic polycarboxylic acid polyester with a polysiloxane copolymer. The dispersants ANTI-TERRA-U and BYK-220S improved the density, tensile strength, tear strength, and hardness of FPUF. TGA of the top and bottom portions of the foam showed less weight difference for samples containing dispersants, indicating better homogeneity due to improved dispersibility. Therefore, we conclude that dispersants are beneficial additives to improve the mechanical properties and dispersibility of PU foam.
期刊介绍:
Fire and Materials is an international journal for scientific and technological communications directed at the fire properties of materials and the products into which they are made. This covers all aspects of the polymer field and the end uses where polymers find application; the important developments in the fields of natural products - wood and cellulosics; non-polymeric materials - metals and ceramics; as well as the chemistry and industrial applications of fire retardant chemicals.
Contributions will be particularly welcomed on heat release; properties of combustion products - smoke opacity, toxicity and corrosivity; modelling and testing.