纳米声子超材料在热流调节中的邻近效应

IF 6.5 2区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Frontiers of Physics Pub Date : 2023-12-06 DOI:10.1007/s11467-023-1349-4
Jian Zhang, Haochun Zhang, Gang Zhang
{"title":"纳米声子超材料在热流调节中的邻近效应","authors":"Jian Zhang,&nbsp;Haochun Zhang,&nbsp;Gang Zhang","doi":"10.1007/s11467-023-1349-4","DOIUrl":null,"url":null,"abstract":"<div><p>Recent studies have shown that the construction of nanophononic metamaterials can reduce thermal conductivity without affecting electrical properties, making them promising in many fields of application, such as energy conversion and thermal management. However, although extensive studies have been carried out on thermal conductivity reduction in nanophononic metamaterials, the local heat flux characteristic is still unclear. In this work, we construct a heat flux regulator which includes a silicon nanofilm with silicon pillars. The regulator has remarkable heat flux regulation ability, and various impacts on the regulation ability are explored. Surprisingly, even in the region without nanopillars, the local heat current is still lower than that in pristine silicon nanofilms, reduced by the neighboring nanopillars through the thermal proximity effect. We combine the analysis of the phonon participation ratio with the intensity of localized phonon modes to provide a clear explanation. Our findings not only provide insights into the mechanisms of heat flux regulation by nanophononic metamaterials, but also will open up new research directions to control local heat flux for a broad range of applications, including heat management, thermoelectric energy conversion, thermal cloak, and thermal concentrator.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":573,"journal":{"name":"Frontiers of Physics","volume":"19 2","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2023-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nanophononic metamaterials induced proximity effect in heat flux regulation\",\"authors\":\"Jian Zhang,&nbsp;Haochun Zhang,&nbsp;Gang Zhang\",\"doi\":\"10.1007/s11467-023-1349-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Recent studies have shown that the construction of nanophononic metamaterials can reduce thermal conductivity without affecting electrical properties, making them promising in many fields of application, such as energy conversion and thermal management. However, although extensive studies have been carried out on thermal conductivity reduction in nanophononic metamaterials, the local heat flux characteristic is still unclear. In this work, we construct a heat flux regulator which includes a silicon nanofilm with silicon pillars. The regulator has remarkable heat flux regulation ability, and various impacts on the regulation ability are explored. Surprisingly, even in the region without nanopillars, the local heat current is still lower than that in pristine silicon nanofilms, reduced by the neighboring nanopillars through the thermal proximity effect. We combine the analysis of the phonon participation ratio with the intensity of localized phonon modes to provide a clear explanation. Our findings not only provide insights into the mechanisms of heat flux regulation by nanophononic metamaterials, but also will open up new research directions to control local heat flux for a broad range of applications, including heat management, thermoelectric energy conversion, thermal cloak, and thermal concentrator.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":573,\"journal\":{\"name\":\"Frontiers of Physics\",\"volume\":\"19 2\",\"pages\":\"\"},\"PeriodicalIF\":6.5000,\"publicationDate\":\"2023-12-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers of Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11467-023-1349-4\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s11467-023-1349-4","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

最近的研究表明,构建纳米声子超材料可以在不影响电性能的情况下降低热导率,使其在能量转换和热管理等许多领域具有应用前景。然而,尽管对纳米声子超材料的热导率降低进行了广泛的研究,但其局部热流密度特性仍不清楚。在这项工作中,我们构建了一个包含硅柱的硅纳米膜的热流通量调节器。该调节器具有显著的热流调节能力,并探讨了影响调节能力的各种因素。令人惊讶的是,即使在没有纳米柱的区域,局部热流仍然低于原始硅纳米膜,这是由于邻近的纳米柱通过热邻近效应而降低的。我们将声子参与比的分析与局域声子模式的强度相结合,以提供一个清晰的解释。我们的研究结果不仅为纳米声子超材料的热流调节机制提供了新的见解,而且为热管理、热电能量转换、热斗篷和热集中器等广泛应用的局部热流控制开辟了新的研究方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Nanophononic metamaterials induced proximity effect in heat flux regulation

Recent studies have shown that the construction of nanophononic metamaterials can reduce thermal conductivity without affecting electrical properties, making them promising in many fields of application, such as energy conversion and thermal management. However, although extensive studies have been carried out on thermal conductivity reduction in nanophononic metamaterials, the local heat flux characteristic is still unclear. In this work, we construct a heat flux regulator which includes a silicon nanofilm with silicon pillars. The regulator has remarkable heat flux regulation ability, and various impacts on the regulation ability are explored. Surprisingly, even in the region without nanopillars, the local heat current is still lower than that in pristine silicon nanofilms, reduced by the neighboring nanopillars through the thermal proximity effect. We combine the analysis of the phonon participation ratio with the intensity of localized phonon modes to provide a clear explanation. Our findings not only provide insights into the mechanisms of heat flux regulation by nanophononic metamaterials, but also will open up new research directions to control local heat flux for a broad range of applications, including heat management, thermoelectric energy conversion, thermal cloak, and thermal concentrator.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Frontiers of Physics
Frontiers of Physics PHYSICS, MULTIDISCIPLINARY-
CiteScore
9.20
自引率
9.30%
发文量
898
审稿时长
6-12 weeks
期刊介绍: Frontiers of Physics is an international peer-reviewed journal dedicated to showcasing the latest advancements and significant progress in various research areas within the field of physics. The journal's scope is broad, covering a range of topics that include: Quantum computation and quantum information Atomic, molecular, and optical physics Condensed matter physics, material sciences, and interdisciplinary research Particle, nuclear physics, astrophysics, and cosmology The journal's mission is to highlight frontier achievements, hot topics, and cross-disciplinary points in physics, facilitating communication and idea exchange among physicists both in China and internationally. It serves as a platform for researchers to share their findings and insights, fostering collaboration and innovation across different areas of physics.
期刊最新文献
Erratum to: Noisy intermediate-scale quantum computers Strong ferroelectricity in one-dimensional materials self-assembled by superatomic metal halide clusters Bayesian method for fitting the low-energy constants in chiral perturbation theory Interlayer ferromagnetic coupling in nonmagnetic elements doped CrI3 thin films Magnon, doublon and quarton excitations in 2D S=1/2 trimerized Heisenberg models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1