匹配与个体选择:如何应对拼车需求的区域不平衡

IF 4.4 2区 工程技术 Q1 OPERATIONS RESEARCH & MANAGEMENT SCIENCE Transportation Science Pub Date : 2023-11-21 DOI:10.1287/trsc.2022.0067
Nils Boysen, Dirk Briskorn, Rea Röntgen, Michael Dienstknecht
{"title":"匹配与个体选择:如何应对拼车需求的区域不平衡","authors":"Nils Boysen, Dirk Briskorn, Rea Röntgen, Michael Dienstknecht","doi":"10.1287/trsc.2022.0067","DOIUrl":null,"url":null,"abstract":"Among the most crucial organizational challenges of free-floating carsharing is the question how to cope with regional demand imbalance. Because users are allowed to leave a rented car anywhere in the service district, it regularly occurs that too many cars are left behind in low-demand regions whereas other regions face a demand surplus. In this paper, we consider a countermeasure that has been overlooked by previous research: an optimization-based matching of carsharing supply and demand that not only addresses the profit promised by the current matches but also targets future demand imbalance. To account for such imbalances, we define regional demand levels that specify the projected number of requested cars per region and aim to reduce the deviations of the regions’ actual car supply from these target levels. We present exact polynomial-time algorithms for this extended matching task that are suitable for real-time application on large carsharing platforms. In an extensive computational study, we compare optimization-based matching approaches with and without the consideration of demand imbalance and benchmark them with the status quo, the individual choice of carsharing users among available cars. Based on generated data with considerable demand variation among regions, our results indicate a clear advantage of our novel matching approach. In a further study based on a large carsharing data set, however, the proof of concept fails because the real-world regions are cut according to geographical characteristics instead of demand variation. To successfully relieve the strains of demand imbalance, our novel matching task thus requires a properly partitioned service district and reliable forecasts of the carsharing demands.Funding: This work was supported by the Deutsche Forschungsgemeinschaft [Grants BO 3148/8-1 and BR 3873/10-1].Supplemental Material: The online appendix is available at https://doi.org/10.1287/trsc.2022.0067 .","PeriodicalId":51202,"journal":{"name":"Transportation Science","volume":"80 S8","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2023-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Matching vs. Individual Choice: How to Counter Regional Imbalance of Carsharing Demand\",\"authors\":\"Nils Boysen, Dirk Briskorn, Rea Röntgen, Michael Dienstknecht\",\"doi\":\"10.1287/trsc.2022.0067\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Among the most crucial organizational challenges of free-floating carsharing is the question how to cope with regional demand imbalance. Because users are allowed to leave a rented car anywhere in the service district, it regularly occurs that too many cars are left behind in low-demand regions whereas other regions face a demand surplus. In this paper, we consider a countermeasure that has been overlooked by previous research: an optimization-based matching of carsharing supply and demand that not only addresses the profit promised by the current matches but also targets future demand imbalance. To account for such imbalances, we define regional demand levels that specify the projected number of requested cars per region and aim to reduce the deviations of the regions’ actual car supply from these target levels. We present exact polynomial-time algorithms for this extended matching task that are suitable for real-time application on large carsharing platforms. In an extensive computational study, we compare optimization-based matching approaches with and without the consideration of demand imbalance and benchmark them with the status quo, the individual choice of carsharing users among available cars. Based on generated data with considerable demand variation among regions, our results indicate a clear advantage of our novel matching approach. In a further study based on a large carsharing data set, however, the proof of concept fails because the real-world regions are cut according to geographical characteristics instead of demand variation. To successfully relieve the strains of demand imbalance, our novel matching task thus requires a properly partitioned service district and reliable forecasts of the carsharing demands.Funding: This work was supported by the Deutsche Forschungsgemeinschaft [Grants BO 3148/8-1 and BR 3873/10-1].Supplemental Material: The online appendix is available at https://doi.org/10.1287/trsc.2022.0067 .\",\"PeriodicalId\":51202,\"journal\":{\"name\":\"Transportation Science\",\"volume\":\"80 S8\",\"pages\":\"\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2023-11-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transportation Science\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1287/trsc.2022.0067\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPERATIONS RESEARCH & MANAGEMENT SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transportation Science","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1287/trsc.2022.0067","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPERATIONS RESEARCH & MANAGEMENT SCIENCE","Score":null,"Total":0}
引用次数: 1

摘要

自由浮动式共享汽车最关键的组织挑战之一是如何应对地区需求不平衡的问题。因为用户可以把租来的车停在服务区的任何地方,所以经常会出现在低需求地区留下太多的车,而其他地区则面临需求过剩的情况。在本文中,我们考虑了一个被以往研究忽视的对策:基于优化的汽车共享供需匹配,既解决了当前匹配所承诺的利润,也解决了未来需求失衡的问题。为了解释这种不平衡,我们定义了区域需求水平,该需求水平指定了每个地区预计的汽车需求数量,并旨在减少该地区实际汽车供应与这些目标水平的偏差。我们提出了适合于大型汽车共享平台实时应用的精确多项式时间算法。在广泛的计算研究中,我们比较了考虑需求不平衡和不考虑需求不平衡的基于优化的匹配方法,并将其与现状进行基准测试,即汽车共享用户在可用汽车中的个人选择。基于区域间需求差异较大的生成数据,我们的结果表明我们的新匹配方法具有明显的优势。然而,在基于大型汽车共享数据集的进一步研究中,概念证明失败了,因为现实世界的区域是根据地理特征而不是需求变化来划分的。为了成功地缓解需求不平衡的压力,我们的新匹配任务需要适当划分服务区和可靠的汽车共享需求预测。资助:本研究得到了德国科学研究基金会(Deutsche Forschungsgemeinschaft)的支持[赠款BO 3148/8-1和BR 3873/10-1]。补充材料:在线附录可在https://doi.org/10.1287/trsc.2022.0067上获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Matching vs. Individual Choice: How to Counter Regional Imbalance of Carsharing Demand
Among the most crucial organizational challenges of free-floating carsharing is the question how to cope with regional demand imbalance. Because users are allowed to leave a rented car anywhere in the service district, it regularly occurs that too many cars are left behind in low-demand regions whereas other regions face a demand surplus. In this paper, we consider a countermeasure that has been overlooked by previous research: an optimization-based matching of carsharing supply and demand that not only addresses the profit promised by the current matches but also targets future demand imbalance. To account for such imbalances, we define regional demand levels that specify the projected number of requested cars per region and aim to reduce the deviations of the regions’ actual car supply from these target levels. We present exact polynomial-time algorithms for this extended matching task that are suitable for real-time application on large carsharing platforms. In an extensive computational study, we compare optimization-based matching approaches with and without the consideration of demand imbalance and benchmark them with the status quo, the individual choice of carsharing users among available cars. Based on generated data with considerable demand variation among regions, our results indicate a clear advantage of our novel matching approach. In a further study based on a large carsharing data set, however, the proof of concept fails because the real-world regions are cut according to geographical characteristics instead of demand variation. To successfully relieve the strains of demand imbalance, our novel matching task thus requires a properly partitioned service district and reliable forecasts of the carsharing demands.Funding: This work was supported by the Deutsche Forschungsgemeinschaft [Grants BO 3148/8-1 and BR 3873/10-1].Supplemental Material: The online appendix is available at https://doi.org/10.1287/trsc.2022.0067 .
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Transportation Science
Transportation Science 工程技术-运筹学与管理科学
CiteScore
8.30
自引率
10.90%
发文量
111
审稿时长
12 months
期刊介绍: Transportation Science, published quarterly by INFORMS, is the flagship journal of the Transportation Science and Logistics Society of INFORMS. As the foremost scientific journal in the cross-disciplinary operational research field of transportation analysis, Transportation Science publishes high-quality original contributions and surveys on phenomena associated with all modes of transportation, present and prospective, including mainly all levels of planning, design, economic, operational, and social aspects. Transportation Science focuses primarily on fundamental theories, coupled with observational and experimental studies of transportation and logistics phenomena and processes, mathematical models, advanced methodologies and novel applications in transportation and logistics systems analysis, planning and design. The journal covers a broad range of topics that include vehicular and human traffic flow theories, models and their application to traffic operations and management, strategic, tactical, and operational planning of transportation and logistics systems; performance analysis methods and system design and optimization; theories and analysis methods for network and spatial activity interaction, equilibrium and dynamics; economics of transportation system supply and evaluation; methodologies for analysis of transportation user behavior and the demand for transportation and logistics services. Transportation Science is international in scope, with editors from nations around the globe. The editorial board reflects the diverse interdisciplinary interests of the transportation science and logistics community, with members that hold primary affiliations in engineering (civil, industrial, and aeronautical), physics, economics, applied mathematics, and business.
期刊最新文献
CARMA: Fair and Efficient Bottleneck Congestion Management via Nontradable Karma Credits Genetic Algorithms with Neural Cost Predictor for Solving Hierarchical Vehicle Routing Problems On-Demand Meal Delivery: A Markov Model for Circulating Couriers Physics-Informed Machine Learning for Calibrating Macroscopic Traffic Flow Models Heatmap Design for Probabilistic Driver Repositioning in Crowdsourced Delivery
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1