生成基因处理器网络

IF 1.7 3区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Genetic Programming and Evolvable Machines Pub Date : 2021-10-21 DOI:10.1007/s10710-021-09423-7
Campos, Marcelino, Sempere, José M.
{"title":"生成基因处理器网络","authors":"Campos, Marcelino, Sempere, José M.","doi":"10.1007/s10710-021-09423-7","DOIUrl":null,"url":null,"abstract":"<p>The Networks of Genetic Processors (NGPs) are non-conventional models of computation based on genetic operations over strings, namely mutation and crossover operations as it was established in genetic algorithms. Initially, they have been proposed as acceptor machines which are decision problem solvers. In that case, it has been shown that they are universal computing models equivalent to Turing machines. In this work, we propose NGPs as enumeration devices and we analyze their computational power. First, we define the model and we propose its definition as parallel genetic algorithms. Once the correspondence between the two formalisms has been established, we carry out a study of the generation capacity of the NGPs under the research framework of the theory of formal languages. We investigate the relationships between the number of processors of the model and its generative power. Our results show that the number of processors is important to increase the generative capability of the model up to an upper bound, and that NGPs are universal models of computation if they are formulated as generation devices. This allows us to affirm that parallel genetic algorithms working under certain restrictions can be considered equivalent to Turing machines and, therefore, they are universal models of computation.</p>","PeriodicalId":50424,"journal":{"name":"Genetic Programming and Evolvable Machines","volume":"29 4","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2021-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Generating networks of genetic processors\",\"authors\":\"Campos, Marcelino, Sempere, José M.\",\"doi\":\"10.1007/s10710-021-09423-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The Networks of Genetic Processors (NGPs) are non-conventional models of computation based on genetic operations over strings, namely mutation and crossover operations as it was established in genetic algorithms. Initially, they have been proposed as acceptor machines which are decision problem solvers. In that case, it has been shown that they are universal computing models equivalent to Turing machines. In this work, we propose NGPs as enumeration devices and we analyze their computational power. First, we define the model and we propose its definition as parallel genetic algorithms. Once the correspondence between the two formalisms has been established, we carry out a study of the generation capacity of the NGPs under the research framework of the theory of formal languages. We investigate the relationships between the number of processors of the model and its generative power. Our results show that the number of processors is important to increase the generative capability of the model up to an upper bound, and that NGPs are universal models of computation if they are formulated as generation devices. This allows us to affirm that parallel genetic algorithms working under certain restrictions can be considered equivalent to Turing machines and, therefore, they are universal models of computation.</p>\",\"PeriodicalId\":50424,\"journal\":{\"name\":\"Genetic Programming and Evolvable Machines\",\"volume\":\"29 4\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2021-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Genetic Programming and Evolvable Machines\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s10710-021-09423-7\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genetic Programming and Evolvable Machines","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10710-021-09423-7","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

遗传处理器网络(NGPs)是基于字符串遗传操作的非常规计算模型,即遗传算法中建立的突变和交叉操作。最初,它们被认为是决策问题解决者的接受机器。在这种情况下,已经证明它们是相当于图灵机的通用计算模型。在这项工作中,我们提出了ngp作为枚举设备,并分析了它们的计算能力。首先对模型进行了定义,并将其定义为并行遗传算法。在建立了两种形式主义的对应关系后,我们在形式语言理论的研究框架下对ngp的生成能力进行了研究。我们研究了该模型的处理器数量与其生成能力之间的关系。我们的研究结果表明,处理器的数量对于将模型的生成能力提高到一个上限是很重要的,并且如果将ngp表述为生成设备,则它们是通用的计算模型。这使我们可以肯定,在某些限制下工作的并行遗传算法可以被认为等同于图灵机,因此,它们是计算的通用模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Generating networks of genetic processors

The Networks of Genetic Processors (NGPs) are non-conventional models of computation based on genetic operations over strings, namely mutation and crossover operations as it was established in genetic algorithms. Initially, they have been proposed as acceptor machines which are decision problem solvers. In that case, it has been shown that they are universal computing models equivalent to Turing machines. In this work, we propose NGPs as enumeration devices and we analyze their computational power. First, we define the model and we propose its definition as parallel genetic algorithms. Once the correspondence between the two formalisms has been established, we carry out a study of the generation capacity of the NGPs under the research framework of the theory of formal languages. We investigate the relationships between the number of processors of the model and its generative power. Our results show that the number of processors is important to increase the generative capability of the model up to an upper bound, and that NGPs are universal models of computation if they are formulated as generation devices. This allows us to affirm that parallel genetic algorithms working under certain restrictions can be considered equivalent to Turing machines and, therefore, they are universal models of computation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Genetic Programming and Evolvable Machines
Genetic Programming and Evolvable Machines 工程技术-计算机:理论方法
CiteScore
5.90
自引率
3.80%
发文量
19
审稿时长
6 months
期刊介绍: A unique source reporting on methods for artificial evolution of programs and machines... Reports innovative and significant progress in automatic evolution of software and hardware. Features both theoretical and application papers. Covers hardware implementations, artificial life, molecular computing and emergent computation techniques. Examines such related topics as evolutionary algorithms with variable-size genomes, alternate methods of program induction, approaches to engineering systems development based on embryology, morphogenesis or other techniques inspired by adaptive natural systems.
期刊最新文献
Evolving code with a large language model Hga-lstm: LSTM architecture and hyperparameter search by hybrid GA for air pollution prediction A survey on dynamic populations in bio-inspired algorithms GSGP-hardware: instantaneous symbolic regression with an FPGA implementation of geometric semantic genetic programming Geometric semantic GP with linear scaling: Darwinian versus Lamarckian evolution
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1