微生物提高采油(MEOR)技术的发展现状与展望

IF 8.1 2区 工程技术 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Critical Reviews in Biotechnology Pub Date : 2024-09-01 Epub Date: 2023-12-06 DOI:10.1080/07388551.2023.2270578
Cong-Yu Ke, Rui Sun, Ming-Xia Wei, Xiu-Ni Yuan, Wu-Juan Sun, Si-Chang Wang, Qun-Zheng Zhang, Xun-Li Zhang
{"title":"微生物提高采油(MEOR)技术的发展现状与展望","authors":"Cong-Yu Ke, Rui Sun, Ming-Xia Wei, Xiu-Ni Yuan, Wu-Juan Sun, Si-Chang Wang, Qun-Zheng Zhang, Xun-Li Zhang","doi":"10.1080/07388551.2023.2270578","DOIUrl":null,"url":null,"abstract":"<p><p>After conventional oil recovery operations, more than half of the crude oil still remains in a form, which is difficult to extract. Therefore, exploring and developing new enhanced oil recovery (EOR) technologies have always been priority research in oilfield development. Microbial enhanced oil recovery (MEOR) is a promising tertiary oil recovery technology that has received widespread attention from the global oil industry in recent years due to its environmental friendliness, simplicity of operation, and cost-effectiveness. This review presents the: principle, characteristics, classification, recent development, and applications of MEOR technology. Based on hundreds of field trials conducted worldwide, the microbial strains, nutrient systems, and actual effects used in these technologies are summarized, with an emphasis on the achievements made in the development and application of MEOR in China in recent years. These technical classifications involve: microbial huff and puff recovery (MHPR), microbial flooding recovery (MFR), microbial selective plugging recovery (MSPR), and microbial wax removal and control (MWRC). Most of them have achieved good results, with a success rate of approximately 80%. These successful cases have accumulated into rich experiential indications for the popularization and application of MEOR technology, but there are still important yet uncertain factors that hinder the industrialization of this technology. Finally, based on the extensive research and development of MEOR by the authors, especially in both laboratory and industrial large scales, the main challenges and future perspectives of the industrial application for MEOR are presented.</p>","PeriodicalId":10752,"journal":{"name":"Critical Reviews in Biotechnology","volume":" ","pages":"1183-1202"},"PeriodicalIF":8.1000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Microbial enhanced oil recovery (MEOR): recent development and future perspectives.\",\"authors\":\"Cong-Yu Ke, Rui Sun, Ming-Xia Wei, Xiu-Ni Yuan, Wu-Juan Sun, Si-Chang Wang, Qun-Zheng Zhang, Xun-Li Zhang\",\"doi\":\"10.1080/07388551.2023.2270578\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>After conventional oil recovery operations, more than half of the crude oil still remains in a form, which is difficult to extract. Therefore, exploring and developing new enhanced oil recovery (EOR) technologies have always been priority research in oilfield development. Microbial enhanced oil recovery (MEOR) is a promising tertiary oil recovery technology that has received widespread attention from the global oil industry in recent years due to its environmental friendliness, simplicity of operation, and cost-effectiveness. This review presents the: principle, characteristics, classification, recent development, and applications of MEOR technology. Based on hundreds of field trials conducted worldwide, the microbial strains, nutrient systems, and actual effects used in these technologies are summarized, with an emphasis on the achievements made in the development and application of MEOR in China in recent years. These technical classifications involve: microbial huff and puff recovery (MHPR), microbial flooding recovery (MFR), microbial selective plugging recovery (MSPR), and microbial wax removal and control (MWRC). Most of them have achieved good results, with a success rate of approximately 80%. These successful cases have accumulated into rich experiential indications for the popularization and application of MEOR technology, but there are still important yet uncertain factors that hinder the industrialization of this technology. Finally, based on the extensive research and development of MEOR by the authors, especially in both laboratory and industrial large scales, the main challenges and future perspectives of the industrial application for MEOR are presented.</p>\",\"PeriodicalId\":10752,\"journal\":{\"name\":\"Critical Reviews in Biotechnology\",\"volume\":\" \",\"pages\":\"1183-1202\"},\"PeriodicalIF\":8.1000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Critical Reviews in Biotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/07388551.2023.2270578\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/12/6 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Critical Reviews in Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/07388551.2023.2270578","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/12/6 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

常规采油作业后,仍有一半以上的原油以某种形式存在,难以提取。因此,探索和开发新的提高采收率技术一直是油田开发的重点研究方向。微生物提高采油(MEOR)是一种极具发展前景的三次采油技术,近年来因其环境友好、操作简单、成本效益高而受到全球石油行业的广泛关注。本文综述了MEOR技术的原理、特点、分类、最新发展及应用。在国内外数百项田间试验的基础上,综述了这些技术的微生物菌种、营养体系和实际效果,重点介绍了近年来中国在MEOR开发和应用方面取得的成就。这些技术分类包括:微生物吞吐采油(MHPR)、微生物驱油采油(MFR)、微生物选择性封堵采油(MSPR)和微生物除蜡与控制(MWRC)。大多数都取得了良好的效果,成功率约为80%。这些成功案例为MEOR技术的推广应用积累了丰富的经验标志,但仍存在阻碍该技术产业化的重要但不确定的因素。最后,基于作者对MEOR的广泛研究和发展,特别是在实验室和工业大尺度上,提出了MEOR工业应用的主要挑战和未来展望。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Microbial enhanced oil recovery (MEOR): recent development and future perspectives.

After conventional oil recovery operations, more than half of the crude oil still remains in a form, which is difficult to extract. Therefore, exploring and developing new enhanced oil recovery (EOR) technologies have always been priority research in oilfield development. Microbial enhanced oil recovery (MEOR) is a promising tertiary oil recovery technology that has received widespread attention from the global oil industry in recent years due to its environmental friendliness, simplicity of operation, and cost-effectiveness. This review presents the: principle, characteristics, classification, recent development, and applications of MEOR technology. Based on hundreds of field trials conducted worldwide, the microbial strains, nutrient systems, and actual effects used in these technologies are summarized, with an emphasis on the achievements made in the development and application of MEOR in China in recent years. These technical classifications involve: microbial huff and puff recovery (MHPR), microbial flooding recovery (MFR), microbial selective plugging recovery (MSPR), and microbial wax removal and control (MWRC). Most of them have achieved good results, with a success rate of approximately 80%. These successful cases have accumulated into rich experiential indications for the popularization and application of MEOR technology, but there are still important yet uncertain factors that hinder the industrialization of this technology. Finally, based on the extensive research and development of MEOR by the authors, especially in both laboratory and industrial large scales, the main challenges and future perspectives of the industrial application for MEOR are presented.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Critical Reviews in Biotechnology
Critical Reviews in Biotechnology 工程技术-生物工程与应用微生物
CiteScore
20.80
自引率
1.10%
发文量
71
审稿时长
4.8 months
期刊介绍: Biotechnological techniques, from fermentation to genetic manipulation, have become increasingly relevant to the food and beverage, fuel production, chemical and pharmaceutical, and waste management industries. Consequently, academic as well as industrial institutions need to keep abreast of the concepts, data, and methodologies evolved by continuing research. This journal provides a forum of critical evaluation of recent and current publications and, periodically, for state-of-the-art reports from various geographic areas around the world. Contributing authors are recognized experts in their fields, and each article is reviewed by an objective expert to ensure accuracy and objectivity of the presentation.
期刊最新文献
Recent advances and biotechnological applications of RNA metabolism in plant chloroplasts and mitochondria. APETALA2/ethylene-responsive factors in higher plant and their roles in regulation of plant stress response. Fashion meets science: how advanced breeding approaches could revolutionize the textile industry. Insight into recent advances in microalgae biogranulation in wastewater treatment. Advances in Vibrio-related infection management: an integrated technology approach for aquaculture and human health.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1