一种基于类分解的检测阿尔茨海默病进展的鲁棒方法。

IF 2.8 4区 医学 Q2 MEDICINE, RESEARCH & EXPERIMENTAL Experimental Biology and Medicine Pub Date : 2023-12-01 Epub Date: 2023-12-07 DOI:10.1177/15353702231211880
Maha M Alwuthaynani, Zahraa S Abdallah, Raul Santos-Rodriguez
{"title":"一种基于类分解的检测阿尔茨海默病进展的鲁棒方法。","authors":"Maha M Alwuthaynani, Zahraa S Abdallah, Raul Santos-Rodriguez","doi":"10.1177/15353702231211880","DOIUrl":null,"url":null,"abstract":"<p><p>Computer-aided diagnosis of Alzheimer's disease (AD) is a rapidly growing field with the possibility to be utilized in practice. Deep learning has received much attention in detecting AD from structural magnetic resonance imaging (sMRI). However, training a convolutional neural network from scratch is problematic because it requires a lot of annotated data and additional computational time. Transfer learning can offer a promising and practical solution by transferring information learned from other image recognition tasks to medical image classification. Another issue is the dataset distribution's irregularities. A common classification issue in datasets is a class imbalance, where the distribution of samples among the classes is biased. For example, a dataset may contain more instances of some classes than others. Class imbalance is challenging because most machine learning algorithms assume that each class should have an equal number of samples. Models consequently perform poorly in prediction. Class decomposition can address this problem by making learning a dataset's class boundaries easier. Motivated by these approaches, we propose a class decomposition transfer learning (CDTL) approach that employs VGG19, AlexNet, and an entropy-based technique to detect AD from sMRI. This study aims to assess the robustness of the CDTL approach in detecting the cognitive decline of AD using data from various ADNI cohorts to determine whether comparable classification accuracy for the two or more cohorts would be obtained. Furthermore, the proposed model achieved state-of-the-art performance in predicting mild cognitive impairment (MCI)-to-AD conversion with an accuracy of 91.45%.</p>","PeriodicalId":12163,"journal":{"name":"Experimental Biology and Medicine","volume":" ","pages":"2514-2525"},"PeriodicalIF":2.8000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10854473/pdf/","citationCount":"0","resultStr":"{\"title\":\"A robust class decomposition-based approach for detecting Alzheimer's progression.\",\"authors\":\"Maha M Alwuthaynani, Zahraa S Abdallah, Raul Santos-Rodriguez\",\"doi\":\"10.1177/15353702231211880\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Computer-aided diagnosis of Alzheimer's disease (AD) is a rapidly growing field with the possibility to be utilized in practice. Deep learning has received much attention in detecting AD from structural magnetic resonance imaging (sMRI). However, training a convolutional neural network from scratch is problematic because it requires a lot of annotated data and additional computational time. Transfer learning can offer a promising and practical solution by transferring information learned from other image recognition tasks to medical image classification. Another issue is the dataset distribution's irregularities. A common classification issue in datasets is a class imbalance, where the distribution of samples among the classes is biased. For example, a dataset may contain more instances of some classes than others. Class imbalance is challenging because most machine learning algorithms assume that each class should have an equal number of samples. Models consequently perform poorly in prediction. Class decomposition can address this problem by making learning a dataset's class boundaries easier. Motivated by these approaches, we propose a class decomposition transfer learning (CDTL) approach that employs VGG19, AlexNet, and an entropy-based technique to detect AD from sMRI. This study aims to assess the robustness of the CDTL approach in detecting the cognitive decline of AD using data from various ADNI cohorts to determine whether comparable classification accuracy for the two or more cohorts would be obtained. Furthermore, the proposed model achieved state-of-the-art performance in predicting mild cognitive impairment (MCI)-to-AD conversion with an accuracy of 91.45%.</p>\",\"PeriodicalId\":12163,\"journal\":{\"name\":\"Experimental Biology and Medicine\",\"volume\":\" \",\"pages\":\"2514-2525\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2023-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10854473/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Experimental Biology and Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1177/15353702231211880\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/12/7 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental Biology and Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/15353702231211880","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/12/7 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

摘要

计算机辅助诊断阿尔茨海默病(AD)是一个快速发展的领域,有可能在实践中得到应用。深度学习在结构磁共振成像(sMRI)检测AD方面受到了广泛关注。然而,从头开始训练卷积神经网络是有问题的,因为它需要大量带注释的数据和额外的计算时间。迁移学习可以将从其他图像识别任务中学习到的信息转移到医学图像分类中,这是一种很有前途的实用解决方案。另一个问题是数据集分布的不规则性。数据集中一个常见的分类问题是类不平衡,即类之间的样本分布是有偏差的。例如,数据集可能包含比其他类更多的类实例。类不平衡是一个挑战,因为大多数机器学习算法都假设每个类应该有相同数量的样本。因此,模型在预测方面表现不佳。类分解可以通过更容易地学习数据集的类边界来解决这个问题。在这些方法的激励下,我们提出了一种类分解迁移学习(CDTL)方法,该方法采用VGG19、AlexNet和基于熵的技术从sMRI中检测AD。本研究旨在评估CDTL方法在检测AD认知能力下降方面的稳健性,使用来自不同ADNI队列的数据,以确定是否可以获得两个或更多队列的可比较分类准确性。此外,该模型在预测轻度认知障碍(MCI)到ad转换方面取得了最先进的性能,准确率为91.45%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A robust class decomposition-based approach for detecting Alzheimer's progression.

Computer-aided diagnosis of Alzheimer's disease (AD) is a rapidly growing field with the possibility to be utilized in practice. Deep learning has received much attention in detecting AD from structural magnetic resonance imaging (sMRI). However, training a convolutional neural network from scratch is problematic because it requires a lot of annotated data and additional computational time. Transfer learning can offer a promising and practical solution by transferring information learned from other image recognition tasks to medical image classification. Another issue is the dataset distribution's irregularities. A common classification issue in datasets is a class imbalance, where the distribution of samples among the classes is biased. For example, a dataset may contain more instances of some classes than others. Class imbalance is challenging because most machine learning algorithms assume that each class should have an equal number of samples. Models consequently perform poorly in prediction. Class decomposition can address this problem by making learning a dataset's class boundaries easier. Motivated by these approaches, we propose a class decomposition transfer learning (CDTL) approach that employs VGG19, AlexNet, and an entropy-based technique to detect AD from sMRI. This study aims to assess the robustness of the CDTL approach in detecting the cognitive decline of AD using data from various ADNI cohorts to determine whether comparable classification accuracy for the two or more cohorts would be obtained. Furthermore, the proposed model achieved state-of-the-art performance in predicting mild cognitive impairment (MCI)-to-AD conversion with an accuracy of 91.45%.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Experimental Biology and Medicine
Experimental Biology and Medicine 医学-医学:研究与实验
CiteScore
6.00
自引率
0.00%
发文量
157
审稿时长
1 months
期刊介绍: Experimental Biology and Medicine (EBM) is a global, peer-reviewed journal dedicated to the publication of multidisciplinary and interdisciplinary research in the biomedical sciences. EBM provides both research and review articles as well as meeting symposia and brief communications. Articles in EBM represent cutting edge research at the overlapping junctions of the biological, physical and engineering sciences that impact upon the health and welfare of the world''s population. Topics covered in EBM include: Anatomy/Pathology; Biochemistry and Molecular Biology; Bioimaging; Biomedical Engineering; Bionanoscience; Cell and Developmental Biology; Endocrinology and Nutrition; Environmental Health/Biomarkers/Precision Medicine; Genomics, Proteomics, and Bioinformatics; Immunology/Microbiology/Virology; Mechanisms of Aging; Neuroscience; Pharmacology and Toxicology; Physiology; Stem Cell Biology; Structural Biology; Systems Biology and Microphysiological Systems; and Translational Research.
期刊最新文献
STEMIN and YAP5SA, the future of heart repair? Fructose metabolism is unregulated in cancers and placentae. Subunit-specific mechanisms of isoflurane-induced acute tonic inhibition in dentate gyrus granule neuron. Quantitative characterization of retinal features in translated OCTA. Exosomal circPTPRK promotes angiogenesis after radiofrequency ablation in hepatocellular carcinoma.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1