{"title":"RBMS2对肾透明细胞癌进展和预后的临床和细胞影响。","authors":"Zhixiang Gao, Shouren Fan","doi":"10.1155/2023/5512781","DOIUrl":null,"url":null,"abstract":"<p><p>This research delves into the implications of the RNA binding motif, single stranded interacting protein 2 (RBMS2)-a gene associated with tumor-suppressing functions-in the context of kidney renal clear cell carcinoma (ccRCC). Through meticulous exploration of online databases, we have identified a negative association between RBMS2 expression and adverse clinico-pathological features, such as advanced TNM stage. Furthermore, our findings indicate that RBMS2 acts as a prognostic predictor for clinical outcomes in ccRCC, evidenced by both univariate and multivariate analyses. Cellular assays have corroborated these findings, revealing that an overexpression of RBMS2 curtails ccRCC cell proliferation and migration. Additionally, our research has unearthed links between RBMS2 and immune infiltration within the ccRCC tumor microenvironment. Collectively, our results underscore the tumor-inhibiting role of RBMS2 in ccRCC and spotlight its potential as a prognostic marker and therapeutic intervention target.</p>","PeriodicalId":12778,"journal":{"name":"Genetics research","volume":"2023 ","pages":"5512781"},"PeriodicalIF":1.4000,"publicationDate":"2023-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10697775/pdf/","citationCount":"0","resultStr":"{\"title\":\"The Clinical and Cellular Impact of RBMS2 on the Progression and Prognosis of Kidney Renal Clear Cell Carcinoma.\",\"authors\":\"Zhixiang Gao, Shouren Fan\",\"doi\":\"10.1155/2023/5512781\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This research delves into the implications of the RNA binding motif, single stranded interacting protein 2 (RBMS2)-a gene associated with tumor-suppressing functions-in the context of kidney renal clear cell carcinoma (ccRCC). Through meticulous exploration of online databases, we have identified a negative association between RBMS2 expression and adverse clinico-pathological features, such as advanced TNM stage. Furthermore, our findings indicate that RBMS2 acts as a prognostic predictor for clinical outcomes in ccRCC, evidenced by both univariate and multivariate analyses. Cellular assays have corroborated these findings, revealing that an overexpression of RBMS2 curtails ccRCC cell proliferation and migration. Additionally, our research has unearthed links between RBMS2 and immune infiltration within the ccRCC tumor microenvironment. Collectively, our results underscore the tumor-inhibiting role of RBMS2 in ccRCC and spotlight its potential as a prognostic marker and therapeutic intervention target.</p>\",\"PeriodicalId\":12778,\"journal\":{\"name\":\"Genetics research\",\"volume\":\"2023 \",\"pages\":\"5512781\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2023-11-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10697775/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Genetics research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1155/2023/5512781\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q4\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genetics research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1155/2023/5512781","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/1/1 0:00:00","PubModel":"eCollection","JCR":"Q4","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
The Clinical and Cellular Impact of RBMS2 on the Progression and Prognosis of Kidney Renal Clear Cell Carcinoma.
This research delves into the implications of the RNA binding motif, single stranded interacting protein 2 (RBMS2)-a gene associated with tumor-suppressing functions-in the context of kidney renal clear cell carcinoma (ccRCC). Through meticulous exploration of online databases, we have identified a negative association between RBMS2 expression and adverse clinico-pathological features, such as advanced TNM stage. Furthermore, our findings indicate that RBMS2 acts as a prognostic predictor for clinical outcomes in ccRCC, evidenced by both univariate and multivariate analyses. Cellular assays have corroborated these findings, revealing that an overexpression of RBMS2 curtails ccRCC cell proliferation and migration. Additionally, our research has unearthed links between RBMS2 and immune infiltration within the ccRCC tumor microenvironment. Collectively, our results underscore the tumor-inhibiting role of RBMS2 in ccRCC and spotlight its potential as a prognostic marker and therapeutic intervention target.
期刊介绍:
Genetics Research is a key forum for original research on all aspects of human and animal genetics, reporting key findings on genomes, genes, mutations and molecular interactions, extending out to developmental, evolutionary, and population genetics as well as ethical, legal and social aspects. Our aim is to lead to a better understanding of genetic processes in health and disease. The journal focuses on the use of new technologies, such as next generation sequencing together with bioinformatics analysis, to produce increasingly detailed views of how genes function in tissues and how these genes perform, individually or collectively, in normal development and disease aetiology. The journal publishes original work, review articles, short papers, computational studies, and novel methods and techniques in research covering humans and well-established genetic organisms. Key subject areas include medical genetics, genomics, human evolutionary and population genetics, bioinformatics, genetics of complex traits, molecular and developmental genetics, Evo-Devo, quantitative and statistical genetics, behavioural genetics and environmental genetics. The breadth and quality of research make the journal an invaluable resource for medical geneticists, molecular biologists, bioinformaticians and researchers involved in genetic basis of diseases, evolutionary and developmental studies.