D Gregory Sullens, Phuoc Nguyen, Kayla Gilley, Madison B Wiffler, Melanie J Sekeres
{"title":"海马体运动记忆网络的重组取决于熟悉程度,而不是时间。","authors":"D Gregory Sullens, Phuoc Nguyen, Kayla Gilley, Madison B Wiffler, Melanie J Sekeres","doi":"10.1101/lm.053792.123","DOIUrl":null,"url":null,"abstract":"<p><p>There is debate as to whether a time-dependent transformation of the episodic-like memory network is observed for nonepisodic tasks, including procedural motor memory. To determine how motor memory networks reorganize with time and practice, mice performed a motor task in a straight alley maze for 1 d (recent), 20 d of continuous training (continuous), or testing 20 d after the original training (remote), and then regional c-Fos expression was assessed. Elevated hippocampal c-Fos accompanied remote, but not continuous, motor task retrieval after 20 d, suggesting that the hippocampus remains engaged for nonhabitual remote motor memory retrieval.</p>","PeriodicalId":18003,"journal":{"name":"Learning & memory","volume":"30 12","pages":"320-324"},"PeriodicalIF":1.8000,"publicationDate":"2023-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10750863/pdf/","citationCount":"0","resultStr":"{\"title\":\"Hippocampal motor memory network reorganization depends on familiarity, not time.\",\"authors\":\"D Gregory Sullens, Phuoc Nguyen, Kayla Gilley, Madison B Wiffler, Melanie J Sekeres\",\"doi\":\"10.1101/lm.053792.123\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>There is debate as to whether a time-dependent transformation of the episodic-like memory network is observed for nonepisodic tasks, including procedural motor memory. To determine how motor memory networks reorganize with time and practice, mice performed a motor task in a straight alley maze for 1 d (recent), 20 d of continuous training (continuous), or testing 20 d after the original training (remote), and then regional c-Fos expression was assessed. Elevated hippocampal c-Fos accompanied remote, but not continuous, motor task retrieval after 20 d, suggesting that the hippocampus remains engaged for nonhabitual remote motor memory retrieval.</p>\",\"PeriodicalId\":18003,\"journal\":{\"name\":\"Learning & memory\",\"volume\":\"30 12\",\"pages\":\"320-324\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2023-12-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10750863/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Learning & memory\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1101/lm.053792.123\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/12/1 0:00:00\",\"PubModel\":\"Print\",\"JCR\":\"Q4\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Learning & memory","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1101/lm.053792.123","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/12/1 0:00:00","PubModel":"Print","JCR":"Q4","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Hippocampal motor memory network reorganization depends on familiarity, not time.
There is debate as to whether a time-dependent transformation of the episodic-like memory network is observed for nonepisodic tasks, including procedural motor memory. To determine how motor memory networks reorganize with time and practice, mice performed a motor task in a straight alley maze for 1 d (recent), 20 d of continuous training (continuous), or testing 20 d after the original training (remote), and then regional c-Fos expression was assessed. Elevated hippocampal c-Fos accompanied remote, but not continuous, motor task retrieval after 20 d, suggesting that the hippocampus remains engaged for nonhabitual remote motor memory retrieval.
期刊介绍:
The neurobiology of learning and memory is entering a new interdisciplinary era. Advances in neuropsychology have identified regions of brain tissue that are critical for certain types of function. Electrophysiological techniques have revealed behavioral correlates of neuronal activity. Studies of synaptic plasticity suggest that some mechanisms of memory formation may resemble those of neural development. And molecular approaches have identified genes with patterns of expression that influence behavior. It is clear that future progress depends on interdisciplinary investigations. The current literature of learning and memory is large but fragmented. Until now, there has been no single journal devoted to this area of study and no dominant journal that demands attention by serious workers in the area, regardless of specialty. Learning & Memory provides a forum for these investigations in the form of research papers and review articles.