犬足皮炎及足部瘤变的计算机视觉检测模型。

IF 1.9 3区 农林科学 Q3 DERMATOLOGY Veterinary dermatology Pub Date : 2024-04-01 Epub Date: 2023-12-06 DOI:10.1111/vde.13221
Andrew Smith, Patrick W Carroll, Srikanth Aravamuthan, Emil Walleser, Haley Lin, Kelly Anklam, Dörte Döpfer, Neoklis Apostolopoulos
{"title":"犬足皮炎及足部瘤变的计算机视觉检测模型。","authors":"Andrew Smith, Patrick W Carroll, Srikanth Aravamuthan, Emil Walleser, Haley Lin, Kelly Anklam, Dörte Döpfer, Neoklis Apostolopoulos","doi":"10.1111/vde.13221","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Artificial intelligence (AI) has been used successfully in human dermatology. AI utilises convolutional neural networks (CNN) to accomplish tasks such as image classification, object detection and segmentation, facilitating early diagnosis. Computer vision (CV), a field of AI, has shown great results in detecting signs of human skin diseases. Canine paw skin diseases are a common problem in general veterinary practice, and computer vision tools could facilitate the detection and monitoring of disease processes. Currently, no such tool is available in veterinary dermatology.</p><p><strong>Animals: </strong>Digital images of paws from healthy dogs and paws with pododermatitis or neoplasia were used.</p><p><strong>Objectives: </strong>We tested the novel object detection model Pawgnosis, a Tiny YOLOv4 image analysis model deployed on a microcomputer with a camera for the rapid detection of canine pododermatitis and neoplasia.</p><p><strong>Materials and methods: </strong>The prediction performance metrics used to evaluate the models included mean average precision (mAP), precision, recall, average precision (AP) for accuracy and frames per second (FPS) for speed.</p><p><strong>Results: </strong>A large dataset labelled by a single individual (Dataset A) used to train a Tiny YOLOv4 model provided the best results with a mean mAP of 0.95, precision of 0.86, recall of 0.93 and 20 FPS.</p><p><strong>Conclusions and clinical relevance: </strong>This novel object detection model has the potential for application in the field of veterinary dermatology.</p>","PeriodicalId":23599,"journal":{"name":"Veterinary dermatology","volume":" ","pages":"138-147"},"PeriodicalIF":1.9000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Computer vision model for the detection of canine pododermatitis and neoplasia of the paw.\",\"authors\":\"Andrew Smith, Patrick W Carroll, Srikanth Aravamuthan, Emil Walleser, Haley Lin, Kelly Anklam, Dörte Döpfer, Neoklis Apostolopoulos\",\"doi\":\"10.1111/vde.13221\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Artificial intelligence (AI) has been used successfully in human dermatology. AI utilises convolutional neural networks (CNN) to accomplish tasks such as image classification, object detection and segmentation, facilitating early diagnosis. Computer vision (CV), a field of AI, has shown great results in detecting signs of human skin diseases. Canine paw skin diseases are a common problem in general veterinary practice, and computer vision tools could facilitate the detection and monitoring of disease processes. Currently, no such tool is available in veterinary dermatology.</p><p><strong>Animals: </strong>Digital images of paws from healthy dogs and paws with pododermatitis or neoplasia were used.</p><p><strong>Objectives: </strong>We tested the novel object detection model Pawgnosis, a Tiny YOLOv4 image analysis model deployed on a microcomputer with a camera for the rapid detection of canine pododermatitis and neoplasia.</p><p><strong>Materials and methods: </strong>The prediction performance metrics used to evaluate the models included mean average precision (mAP), precision, recall, average precision (AP) for accuracy and frames per second (FPS) for speed.</p><p><strong>Results: </strong>A large dataset labelled by a single individual (Dataset A) used to train a Tiny YOLOv4 model provided the best results with a mean mAP of 0.95, precision of 0.86, recall of 0.93 and 20 FPS.</p><p><strong>Conclusions and clinical relevance: </strong>This novel object detection model has the potential for application in the field of veterinary dermatology.</p>\",\"PeriodicalId\":23599,\"journal\":{\"name\":\"Veterinary dermatology\",\"volume\":\" \",\"pages\":\"138-147\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Veterinary dermatology\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1111/vde.13221\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/12/6 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"DERMATOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Veterinary dermatology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1111/vde.13221","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/12/6 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"DERMATOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

背景:人工智能(AI)已成功应用于人类皮肤病学。人工智能利用卷积神经网络(CNN)完成图像分类、目标检测和分割等任务,便于早期诊断。人工智能(AI)领域的计算机视觉(CV)在检测人类皮肤病征兆方面取得了巨大成果。犬爪皮肤病是一般兽医实践中的常见问题,计算机视觉工具可以促进疾病过程的检测和监测。目前,兽医皮肤科还没有这样的工具。动物:使用健康狗爪和患足皮炎或瘤变狗爪的数字图像。目的:我们测试了一种新的目标检测模型Pawgnosis,这是一种微型YOLOv4图像分析模型,部署在带有相机的微型计算机上,用于快速检测犬足皮炎和肿瘤。材料和方法:用于评估模型的预测性能指标包括平均平均精度(mAP)、精度、召回率、平均精度(AP)和速度帧数(FPS)。结果:使用单个人标记的大型数据集(数据集A)来训练Tiny YOLOv4模型提供了最佳结果,平均mAP为0.95,精度为0.86,召回率为0.93,FPS为20。结论及临床意义:该新型目标检测模型在兽医皮肤病学领域具有应用潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Computer vision model for the detection of canine pododermatitis and neoplasia of the paw.

Background: Artificial intelligence (AI) has been used successfully in human dermatology. AI utilises convolutional neural networks (CNN) to accomplish tasks such as image classification, object detection and segmentation, facilitating early diagnosis. Computer vision (CV), a field of AI, has shown great results in detecting signs of human skin diseases. Canine paw skin diseases are a common problem in general veterinary practice, and computer vision tools could facilitate the detection and monitoring of disease processes. Currently, no such tool is available in veterinary dermatology.

Animals: Digital images of paws from healthy dogs and paws with pododermatitis or neoplasia were used.

Objectives: We tested the novel object detection model Pawgnosis, a Tiny YOLOv4 image analysis model deployed on a microcomputer with a camera for the rapid detection of canine pododermatitis and neoplasia.

Materials and methods: The prediction performance metrics used to evaluate the models included mean average precision (mAP), precision, recall, average precision (AP) for accuracy and frames per second (FPS) for speed.

Results: A large dataset labelled by a single individual (Dataset A) used to train a Tiny YOLOv4 model provided the best results with a mean mAP of 0.95, precision of 0.86, recall of 0.93 and 20 FPS.

Conclusions and clinical relevance: This novel object detection model has the potential for application in the field of veterinary dermatology.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Veterinary dermatology
Veterinary dermatology 农林科学-兽医学
CiteScore
3.20
自引率
21.40%
发文量
92
审稿时长
12-24 weeks
期刊介绍: Veterinary Dermatology is a bi-monthly, peer-reviewed, international journal which publishes papers on all aspects of the skin of mammals, birds, reptiles, amphibians and fish. Scientific research papers, clinical case reports and reviews covering the following aspects of dermatology will be considered for publication: -Skin structure (anatomy, histology, ultrastructure) -Skin function (physiology, biochemistry, pharmacology, immunology, genetics) -Skin microbiology and parasitology -Dermatopathology -Pathogenesis, diagnosis and treatment of skin diseases -New disease entities
期刊最新文献
Long-lasting otic solution containing mometasone furoate can influence intradermal testing in dogs with healthy ears and otitis externa. Clinical features, surgical management and outcome of squamous and basal cell carcinoma in squamates and chelonians. Skin barrier, phenotypic and genotypic characterisation of autosomal recessive ichthyosis in TGM1-deficient Jack Russell Terriers and response to topical ceramide. Treatment of moderate-to-severe canine atopic dermatitis with modified-release mycophenolate (OKV-1001): A pilot open-label, single-arm multicentric clinical trial. Analysis of the immunomodulatory properties of mycobacterium cell wall fraction on the cytokine production of peripheral blood mononuclear cells of healthy dogs.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1