{"title":"氧化还原和排毒:苹果酸穿梭代谢保持疲惫的T细胞健康。","authors":"Alok Kumar, Greg M Delgoffe","doi":"10.1016/j.cmet.2023.11.005","DOIUrl":null,"url":null,"abstract":"<p><p>The malate shuttle is known to maintain the balance of NAD<sup>+</sup>/NADH between the cytosol and mitochondria. However, in T<sub>ex</sub> cells, it primarily detoxifies ammonia (via GOT1-mediated production of 2-KG in an atypical reaction) and provides longevity to chronic-infection-induced T<sub>ex</sub> cells against ammonia-induced cell death.</p>","PeriodicalId":93927,"journal":{"name":"Cell metabolism","volume":"35 12","pages":"2101-2103"},"PeriodicalIF":0.0000,"publicationDate":"2023-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Redox and detox: Malate shuttle metabolism keeps exhausted T cells fit.\",\"authors\":\"Alok Kumar, Greg M Delgoffe\",\"doi\":\"10.1016/j.cmet.2023.11.005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The malate shuttle is known to maintain the balance of NAD<sup>+</sup>/NADH between the cytosol and mitochondria. However, in T<sub>ex</sub> cells, it primarily detoxifies ammonia (via GOT1-mediated production of 2-KG in an atypical reaction) and provides longevity to chronic-infection-induced T<sub>ex</sub> cells against ammonia-induced cell death.</p>\",\"PeriodicalId\":93927,\"journal\":{\"name\":\"Cell metabolism\",\"volume\":\"35 12\",\"pages\":\"2101-2103\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell metabolism\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.cmet.2023.11.005\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell metabolism","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.cmet.2023.11.005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Redox and detox: Malate shuttle metabolism keeps exhausted T cells fit.
The malate shuttle is known to maintain the balance of NAD+/NADH between the cytosol and mitochondria. However, in Tex cells, it primarily detoxifies ammonia (via GOT1-mediated production of 2-KG in an atypical reaction) and provides longevity to chronic-infection-induced Tex cells against ammonia-induced cell death.