Bingxin Yang , Thien-Toan Tran , JoAnna Milam-Guerrero , Dung T. To , Thomas Stahovich , Nosang V. Myung
{"title":"通过直径和结晶度控制提高三氧化钨(WO3)纳米纤维的气敏性能","authors":"Bingxin Yang , Thien-Toan Tran , JoAnna Milam-Guerrero , Dung T. To , Thomas Stahovich , Nosang V. Myung","doi":"10.1016/j.snr.2023.100182","DOIUrl":null,"url":null,"abstract":"<div><p>Tungsten trioxide (WO<sub>3</sub>) is one of most widely investigated metal oxide semiconductors as gas sensing material because of tunable sensing performance toward different analytes through composition modulation (<em>e.g.,</em> dopants) and various morphology and crystallinity. In this work, we synthesized WO<sub>3</sub> nanofibers with different diameter and crystallinity through electrospinning of ammonium metatungstate hydrate (AMH)/polyvinyl pyrrolidone (PVP) nanofibers via design of experiments (DOE) followed by thermal heat treatment with the smaller average diameter being 23.0 nm. Through varying the calcination process, WO<sub>3</sub> nanofibers with different crystallinity were also synthesized, with the smaller average grain size being 23.0 nm. These nanofibers were then exposed to many analytes (<em>i.e.,</em> H<sub>2</sub>S, acetone, toluene, ethanol, ethyl benzene, NO<sub>2</sub>, NO, and methane) under different operating temperatures (<em>i.e.,</em> 250 to 450 °C) to investigate their effect toward sensing response. These systematic studies indicated that nanocrystalline WO<sub>3</sub> nanofibers with the smaller diameter (<em>i.e.,</em> 20 nm) and/or smaller average grain sizes (<em>i.e.,</em>18.7 nm) exhibited best sensing performance independent of target analytes. The barrier energy was also correlated with the gas sensing performance experimentally.</p></div>","PeriodicalId":426,"journal":{"name":"Sensors and Actuators Reports","volume":"7 ","pages":"Article 100182"},"PeriodicalIF":6.5000,"publicationDate":"2023-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666053923000450/pdfft?md5=325b3b6720b9defc81fb89861f3febe4&pid=1-s2.0-S2666053923000450-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Enhancing gas sensing performance of tungsten trioxide (WO3) nanofibers through diameter and crystallinity control\",\"authors\":\"Bingxin Yang , Thien-Toan Tran , JoAnna Milam-Guerrero , Dung T. To , Thomas Stahovich , Nosang V. Myung\",\"doi\":\"10.1016/j.snr.2023.100182\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Tungsten trioxide (WO<sub>3</sub>) is one of most widely investigated metal oxide semiconductors as gas sensing material because of tunable sensing performance toward different analytes through composition modulation (<em>e.g.,</em> dopants) and various morphology and crystallinity. In this work, we synthesized WO<sub>3</sub> nanofibers with different diameter and crystallinity through electrospinning of ammonium metatungstate hydrate (AMH)/polyvinyl pyrrolidone (PVP) nanofibers via design of experiments (DOE) followed by thermal heat treatment with the smaller average diameter being 23.0 nm. Through varying the calcination process, WO<sub>3</sub> nanofibers with different crystallinity were also synthesized, with the smaller average grain size being 23.0 nm. These nanofibers were then exposed to many analytes (<em>i.e.,</em> H<sub>2</sub>S, acetone, toluene, ethanol, ethyl benzene, NO<sub>2</sub>, NO, and methane) under different operating temperatures (<em>i.e.,</em> 250 to 450 °C) to investigate their effect toward sensing response. These systematic studies indicated that nanocrystalline WO<sub>3</sub> nanofibers with the smaller diameter (<em>i.e.,</em> 20 nm) and/or smaller average grain sizes (<em>i.e.,</em>18.7 nm) exhibited best sensing performance independent of target analytes. The barrier energy was also correlated with the gas sensing performance experimentally.</p></div>\",\"PeriodicalId\":426,\"journal\":{\"name\":\"Sensors and Actuators Reports\",\"volume\":\"7 \",\"pages\":\"Article 100182\"},\"PeriodicalIF\":6.5000,\"publicationDate\":\"2023-12-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2666053923000450/pdfft?md5=325b3b6720b9defc81fb89861f3febe4&pid=1-s2.0-S2666053923000450-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sensors and Actuators Reports\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666053923000450\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors and Actuators Reports","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666053923000450","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Enhancing gas sensing performance of tungsten trioxide (WO3) nanofibers through diameter and crystallinity control
Tungsten trioxide (WO3) is one of most widely investigated metal oxide semiconductors as gas sensing material because of tunable sensing performance toward different analytes through composition modulation (e.g., dopants) and various morphology and crystallinity. In this work, we synthesized WO3 nanofibers with different diameter and crystallinity through electrospinning of ammonium metatungstate hydrate (AMH)/polyvinyl pyrrolidone (PVP) nanofibers via design of experiments (DOE) followed by thermal heat treatment with the smaller average diameter being 23.0 nm. Through varying the calcination process, WO3 nanofibers with different crystallinity were also synthesized, with the smaller average grain size being 23.0 nm. These nanofibers were then exposed to many analytes (i.e., H2S, acetone, toluene, ethanol, ethyl benzene, NO2, NO, and methane) under different operating temperatures (i.e., 250 to 450 °C) to investigate their effect toward sensing response. These systematic studies indicated that nanocrystalline WO3 nanofibers with the smaller diameter (i.e., 20 nm) and/or smaller average grain sizes (i.e.,18.7 nm) exhibited best sensing performance independent of target analytes. The barrier energy was also correlated with the gas sensing performance experimentally.
期刊介绍:
Sensors and Actuators Reports is a peer-reviewed open access journal launched out from the Sensors and Actuators journal family. Sensors and Actuators Reports is dedicated to publishing new and original works in the field of all type of sensors and actuators, including bio-, chemical-, physical-, and nano- sensors and actuators, which demonstrates significant progress beyond the current state of the art. The journal regularly publishes original research papers, reviews, and short communications.
For research papers and short communications, the journal aims to publish the new and original work supported by experimental results and as such purely theoretical works are not accepted.