具有样本选择和协变量相关错分类的二元选择模型

IF 1.1 Q3 ECONOMICS Econometrics Pub Date : 2022-03-23 DOI:10.3390/econometrics10020013
Jorge González Chapela
{"title":"具有样本选择和协变量相关错分类的二元选择模型","authors":"Jorge González Chapela","doi":"10.3390/econometrics10020013","DOIUrl":null,"url":null,"abstract":"Misclassification of a binary response variable and nonrandom sample selection are data issues frequently encountered by empirical researchers. For cases in which both issues feature simultaneously in a data set, we formulate a sample selection model for a misclassified binary outcome in which the conditional probabilities of misclassification are allowed to depend on covariates. Assuming the availability of validation data, the pseudo-maximum likelihood technique can be used to estimate the model. The performance of the estimator accounting for misclassification and sample selection is compared to that of estimators offering partial corrections. An empirical example illustrates the proposed framework.","PeriodicalId":11499,"journal":{"name":"Econometrics","volume":"27 16","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2022-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Binary Choice Model with Sample Selection and Covariate-Related Misclassification\",\"authors\":\"Jorge González Chapela\",\"doi\":\"10.3390/econometrics10020013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Misclassification of a binary response variable and nonrandom sample selection are data issues frequently encountered by empirical researchers. For cases in which both issues feature simultaneously in a data set, we formulate a sample selection model for a misclassified binary outcome in which the conditional probabilities of misclassification are allowed to depend on covariates. Assuming the availability of validation data, the pseudo-maximum likelihood technique can be used to estimate the model. The performance of the estimator accounting for misclassification and sample selection is compared to that of estimators offering partial corrections. An empirical example illustrates the proposed framework.\",\"PeriodicalId\":11499,\"journal\":{\"name\":\"Econometrics\",\"volume\":\"27 16\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2022-03-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Econometrics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/econometrics10020013\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Econometrics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/econometrics10020013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0

摘要

二元响应变量的错误分类和非随机样本选择是实证研究中经常遇到的数据问题。对于这两个问题在数据集中同时出现的情况,我们为错误分类的二元结果制定了一个样本选择模型,其中允许错误分类的条件概率依赖于协变量。假设验证数据可用,可以使用伪极大似然技术对模型进行估计。将考虑错误分类和样本选择的估计器的性能与提供部分校正的估计器的性能进行了比较。一个实证例子说明了所提出的框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Binary Choice Model with Sample Selection and Covariate-Related Misclassification
Misclassification of a binary response variable and nonrandom sample selection are data issues frequently encountered by empirical researchers. For cases in which both issues feature simultaneously in a data set, we formulate a sample selection model for a misclassified binary outcome in which the conditional probabilities of misclassification are allowed to depend on covariates. Assuming the availability of validation data, the pseudo-maximum likelihood technique can be used to estimate the model. The performance of the estimator accounting for misclassification and sample selection is compared to that of estimators offering partial corrections. An empirical example illustrates the proposed framework.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Econometrics
Econometrics Economics, Econometrics and Finance-Economics and Econometrics
CiteScore
2.40
自引率
20.00%
发文量
30
审稿时长
11 weeks
期刊最新文献
Score-Driven Interactions for “Disease X” Using COVID and Non-COVID Mortality Signs of Fluctuations in Energy Prices and Energy Stock-Market Volatility in Brazil and in the US Transient and Persistent Technical Efficiencies in Rice Farming: A Generalized True Random-Effects Model Approach Is It Sufficient to Select the Optimal Class Number Based Only on Information Criteria in Fixed- and Random-Parameter Latent Class Discrete Choice Modeling Approaches? Instrumental Variable Method for Regularized Estimation in Generalized Linear Measurement Error Models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1