{"title":"基于遗传规划的半自动化多智能体系统工程框架","authors":"Nicola Mc Donnell, Jim Duggan, Enda Howley","doi":"https://dl.acm.org/doi/10.1145/3584731","DOIUrl":null,"url":null,"abstract":"<p>With the rise of new technologies, such as Edge computing, Internet of Things, Smart Cities, and Smart Grids, there is a growing need for multi-agent systems (MAS) approaches. Designing multi-agent systems is challenging, and doing this in an automated way is even more so. To address this, we propose a new framework, Evolved Gossip Contracts (EGC). It builds on Gossip Contracts (GC), a decentralised cooperation protocol that is used as the communication mechanism to facilitate self-organisation in a cooperative MAS. GC has several methods that are implemented uniquely, depending on the goal the MAS aims to achieve. The EGC framework uses evolutionary computing to search for the best implementation of these methods. To evaluate EGC, it was used to solve a classical NP-hard optimisation problem, the Bin Packing Problem (BPP). The experimental results show that EGC successfully discovered a decentralised strategy to solve the BPP, which is better than two classical heuristics on test cases similar to those on which it was trained; the improvement is statistically significant. EGC is the first framework that leverages evolutionary computing to semi-automate the discovery of a communication protocol for a MAS that has been shown to be effective at solving an NP-hard problem.</p>","PeriodicalId":50919,"journal":{"name":"ACM Transactions on Autonomous and Adaptive Systems","volume":"7 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2023-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Genetic Programming-based Framework for Semi-automated Multi-agent Systems Engineering\",\"authors\":\"Nicola Mc Donnell, Jim Duggan, Enda Howley\",\"doi\":\"https://dl.acm.org/doi/10.1145/3584731\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>With the rise of new technologies, such as Edge computing, Internet of Things, Smart Cities, and Smart Grids, there is a growing need for multi-agent systems (MAS) approaches. Designing multi-agent systems is challenging, and doing this in an automated way is even more so. To address this, we propose a new framework, Evolved Gossip Contracts (EGC). It builds on Gossip Contracts (GC), a decentralised cooperation protocol that is used as the communication mechanism to facilitate self-organisation in a cooperative MAS. GC has several methods that are implemented uniquely, depending on the goal the MAS aims to achieve. The EGC framework uses evolutionary computing to search for the best implementation of these methods. To evaluate EGC, it was used to solve a classical NP-hard optimisation problem, the Bin Packing Problem (BPP). The experimental results show that EGC successfully discovered a decentralised strategy to solve the BPP, which is better than two classical heuristics on test cases similar to those on which it was trained; the improvement is statistically significant. EGC is the first framework that leverages evolutionary computing to semi-automate the discovery of a communication protocol for a MAS that has been shown to be effective at solving an NP-hard problem.</p>\",\"PeriodicalId\":50919,\"journal\":{\"name\":\"ACM Transactions on Autonomous and Adaptive Systems\",\"volume\":\"7 1\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2023-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Autonomous and Adaptive Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/https://dl.acm.org/doi/10.1145/3584731\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Autonomous and Adaptive Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/https://dl.acm.org/doi/10.1145/3584731","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
A Genetic Programming-based Framework for Semi-automated Multi-agent Systems Engineering
With the rise of new technologies, such as Edge computing, Internet of Things, Smart Cities, and Smart Grids, there is a growing need for multi-agent systems (MAS) approaches. Designing multi-agent systems is challenging, and doing this in an automated way is even more so. To address this, we propose a new framework, Evolved Gossip Contracts (EGC). It builds on Gossip Contracts (GC), a decentralised cooperation protocol that is used as the communication mechanism to facilitate self-organisation in a cooperative MAS. GC has several methods that are implemented uniquely, depending on the goal the MAS aims to achieve. The EGC framework uses evolutionary computing to search for the best implementation of these methods. To evaluate EGC, it was used to solve a classical NP-hard optimisation problem, the Bin Packing Problem (BPP). The experimental results show that EGC successfully discovered a decentralised strategy to solve the BPP, which is better than two classical heuristics on test cases similar to those on which it was trained; the improvement is statistically significant. EGC is the first framework that leverages evolutionary computing to semi-automate the discovery of a communication protocol for a MAS that has been shown to be effective at solving an NP-hard problem.
期刊介绍:
TAAS addresses research on autonomous and adaptive systems being undertaken by an increasingly interdisciplinary research community -- and provides a common platform under which this work can be published and disseminated. TAAS encourages contributions aimed at supporting the understanding, development, and control of such systems and of their behaviors.
TAAS addresses research on autonomous and adaptive systems being undertaken by an increasingly interdisciplinary research community - and provides a common platform under which this work can be published and disseminated. TAAS encourages contributions aimed at supporting the understanding, development, and control of such systems and of their behaviors. Contributions are expected to be based on sound and innovative theoretical models, algorithms, engineering and programming techniques, infrastructures and systems, or technological and application experiences.