{"title":"利用量子行走计算紧密结合哈密顿算子的最低特征态","authors":"Georgios D. Varsamis, Ioannis G. Karafyllidis","doi":"10.1142/s0219749922500125","DOIUrl":null,"url":null,"abstract":"<p>Finding or estimating the lowest eigenstate of quantum system Hamiltonians is an important problem for quantum computing, quantum physics, quantum chemistry, and material science. Several quantum computing approaches have been developed to address this problem. The most frequently used method is variational quantum eigensolver (VQE). Many quantum systems, and especially nanomaterials, are described using tight-binding Hamiltonians, but until now no quantum computation method has been developed to find the lowest eigenvalue of these specific, but very important, Hamiltonians. We address the problem of finding the lowest eigenstate of tight-binding Hamiltonians using quantum walks. Quantum walks is a universal model of quantum computation equivalent to the quantum gate model. Furthermore, quantum walks can be mapped to quantum circuits comprising qubits, quantum registers, and quantum gates and, consequently, executed on quantum computers. In our approach, probability distributions, derived from wave function probability amplitudes, enter our quantum algorithm as potential distributions in the space where the quantum walk evolves. Our results showed the quantum walker localization in the case of the lowest eigenvalue is distinctive and characteristic of this state. Our approach will be a valuable computation tool for studying quantum systems described by tight-binding Hamiltonians.</p>","PeriodicalId":51058,"journal":{"name":"International Journal of Quantum Information","volume":"169 4","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2022-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Computing the lowest eigenstate of tight-binding Hamiltonians using quantum walks\",\"authors\":\"Georgios D. Varsamis, Ioannis G. Karafyllidis\",\"doi\":\"10.1142/s0219749922500125\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Finding or estimating the lowest eigenstate of quantum system Hamiltonians is an important problem for quantum computing, quantum physics, quantum chemistry, and material science. Several quantum computing approaches have been developed to address this problem. The most frequently used method is variational quantum eigensolver (VQE). Many quantum systems, and especially nanomaterials, are described using tight-binding Hamiltonians, but until now no quantum computation method has been developed to find the lowest eigenvalue of these specific, but very important, Hamiltonians. We address the problem of finding the lowest eigenstate of tight-binding Hamiltonians using quantum walks. Quantum walks is a universal model of quantum computation equivalent to the quantum gate model. Furthermore, quantum walks can be mapped to quantum circuits comprising qubits, quantum registers, and quantum gates and, consequently, executed on quantum computers. In our approach, probability distributions, derived from wave function probability amplitudes, enter our quantum algorithm as potential distributions in the space where the quantum walk evolves. Our results showed the quantum walker localization in the case of the lowest eigenvalue is distinctive and characteristic of this state. Our approach will be a valuable computation tool for studying quantum systems described by tight-binding Hamiltonians.</p>\",\"PeriodicalId\":51058,\"journal\":{\"name\":\"International Journal of Quantum Information\",\"volume\":\"169 4\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2022-04-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Quantum Information\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1142/s0219749922500125\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Quantum Information","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1142/s0219749922500125","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
Computing the lowest eigenstate of tight-binding Hamiltonians using quantum walks
Finding or estimating the lowest eigenstate of quantum system Hamiltonians is an important problem for quantum computing, quantum physics, quantum chemistry, and material science. Several quantum computing approaches have been developed to address this problem. The most frequently used method is variational quantum eigensolver (VQE). Many quantum systems, and especially nanomaterials, are described using tight-binding Hamiltonians, but until now no quantum computation method has been developed to find the lowest eigenvalue of these specific, but very important, Hamiltonians. We address the problem of finding the lowest eigenstate of tight-binding Hamiltonians using quantum walks. Quantum walks is a universal model of quantum computation equivalent to the quantum gate model. Furthermore, quantum walks can be mapped to quantum circuits comprising qubits, quantum registers, and quantum gates and, consequently, executed on quantum computers. In our approach, probability distributions, derived from wave function probability amplitudes, enter our quantum algorithm as potential distributions in the space where the quantum walk evolves. Our results showed the quantum walker localization in the case of the lowest eigenvalue is distinctive and characteristic of this state. Our approach will be a valuable computation tool for studying quantum systems described by tight-binding Hamiltonians.
期刊介绍:
The International Journal of Quantum Information (IJQI) provides a forum for the interdisciplinary field of Quantum Information Science. In particular, we welcome contributions in these areas of experimental and theoretical research:
Quantum Cryptography
Quantum Computation
Quantum Communication
Fundamentals of Quantum Mechanics
Authors are welcome to submit quality research and review papers as well as short correspondences in both theoretical and experimental areas. Submitted articles will be refereed prior to acceptance for publication in the Journal.