基于copula的条件尾指标

IF 1.4 3区 数学 Q2 STATISTICS & PROBABILITY Journal of Multivariate Analysis Pub Date : 2023-11-24 DOI:10.1016/j.jmva.2023.105268
Vincenzo Coia , Harry Joe , Natalia Nolde
{"title":"基于copula的条件尾指标","authors":"Vincenzo Coia ,&nbsp;Harry Joe ,&nbsp;Natalia Nolde","doi":"10.1016/j.jmva.2023.105268","DOIUrl":null,"url":null,"abstract":"<div><p><span>Consider a multivariate distribution of </span><span><math><mrow><mo>(</mo><mi>X</mi><mo>,</mo><mi>Y</mi><mo>)</mo></mrow></math></span>, where <span><math><mi>X</mi></math></span><span> is a vector of predictor variables and </span><span><math><mi>Y</mi></math></span><span> is a response variable. Results are obtained for comparing the conditional and marginal tail indices, </span><span><math><mrow><msub><mrow><mi>ξ</mi></mrow><mrow><mi>Y</mi><mo>|</mo><mi>X</mi></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow></math></span> and <span><math><msub><mrow><mi>ξ</mi></mrow><mrow><mi>Y</mi></mrow></msub></math></span>, based on conditional distributions <span><math><mrow><mo>{</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>Y</mi><mo>|</mo><mi>X</mi></mrow></msub><mrow><mo>(</mo><mi>⋅</mi><mo>|</mo><mi>x</mi><mo>)</mo></mrow><mo>}</mo></mrow></math></span> and marginal distribution <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>Y</mi></mrow></msub></math></span><span>, respectively. For a multivariate distribution based on a copula, the conditional tail index can be decomposed into a product of copula-based conditional tail indices and the marginal tail index. In some applications, one may want </span><span><math><mrow><msub><mrow><mi>ξ</mi></mrow><mrow><mi>Y</mi><mo>|</mo><mi>X</mi></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow></math></span> to be non-constant, and some new copula families are derived to facilitate this.</p></div>","PeriodicalId":16431,"journal":{"name":"Journal of Multivariate Analysis","volume":"201 ","pages":"Article 105268"},"PeriodicalIF":1.4000,"publicationDate":"2023-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Copula-based conditional tail indices\",\"authors\":\"Vincenzo Coia ,&nbsp;Harry Joe ,&nbsp;Natalia Nolde\",\"doi\":\"10.1016/j.jmva.2023.105268\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>Consider a multivariate distribution of </span><span><math><mrow><mo>(</mo><mi>X</mi><mo>,</mo><mi>Y</mi><mo>)</mo></mrow></math></span>, where <span><math><mi>X</mi></math></span><span> is a vector of predictor variables and </span><span><math><mi>Y</mi></math></span><span> is a response variable. Results are obtained for comparing the conditional and marginal tail indices, </span><span><math><mrow><msub><mrow><mi>ξ</mi></mrow><mrow><mi>Y</mi><mo>|</mo><mi>X</mi></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow></math></span> and <span><math><msub><mrow><mi>ξ</mi></mrow><mrow><mi>Y</mi></mrow></msub></math></span>, based on conditional distributions <span><math><mrow><mo>{</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>Y</mi><mo>|</mo><mi>X</mi></mrow></msub><mrow><mo>(</mo><mi>⋅</mi><mo>|</mo><mi>x</mi><mo>)</mo></mrow><mo>}</mo></mrow></math></span> and marginal distribution <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>Y</mi></mrow></msub></math></span><span>, respectively. For a multivariate distribution based on a copula, the conditional tail index can be decomposed into a product of copula-based conditional tail indices and the marginal tail index. In some applications, one may want </span><span><math><mrow><msub><mrow><mi>ξ</mi></mrow><mrow><mi>Y</mi><mo>|</mo><mi>X</mi></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow></math></span> to be non-constant, and some new copula families are derived to facilitate this.</p></div>\",\"PeriodicalId\":16431,\"journal\":{\"name\":\"Journal of Multivariate Analysis\",\"volume\":\"201 \",\"pages\":\"Article 105268\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2023-11-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Multivariate Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0047259X23001148\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Multivariate Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0047259X23001148","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

考虑(X,Y)的多变量分布,其中X是预测变量的向量,Y是响应变量。分别根据条件分布{FY|X(⋅| X)}和边际分布FY,比较条件尾指数ξY|X(X)和边际尾指数ξY的结果。对于基于copula的多元分布,条件尾指数可以分解为基于copula的条件尾指数与边际尾指数的乘积。在某些应用中,人们可能希望ξY|X(X)是非常数,为了实现这一点,推导了一些新的联结族。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Copula-based conditional tail indices

Consider a multivariate distribution of (X,Y), where X is a vector of predictor variables and Y is a response variable. Results are obtained for comparing the conditional and marginal tail indices, ξY|X(x) and ξY, based on conditional distributions {FY|X(|x)} and marginal distribution FY, respectively. For a multivariate distribution based on a copula, the conditional tail index can be decomposed into a product of copula-based conditional tail indices and the marginal tail index. In some applications, one may want ξY|X(x) to be non-constant, and some new copula families are derived to facilitate this.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Multivariate Analysis
Journal of Multivariate Analysis 数学-统计学与概率论
CiteScore
2.40
自引率
25.00%
发文量
108
审稿时长
74 days
期刊介绍: Founded in 1971, the Journal of Multivariate Analysis (JMVA) is the central venue for the publication of new, relevant methodology and particularly innovative applications pertaining to the analysis and interpretation of multidimensional data. The journal welcomes contributions to all aspects of multivariate data analysis and modeling, including cluster analysis, discriminant analysis, factor analysis, and multidimensional continuous or discrete distribution theory. Topics of current interest include, but are not limited to, inferential aspects of Copula modeling Functional data analysis Graphical modeling High-dimensional data analysis Image analysis Multivariate extreme-value theory Sparse modeling Spatial statistics.
期刊最新文献
Sparse functional varying-coefficient mixture regression Maximum likelihood estimation of elliptical tail Covariance parameter estimation of Gaussian processes with approximated functional inputs PDE-regularised spatial quantile regression Diagnostic checking of periodic vector autoregressive time series models with dependent errors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1