通过降维量化有向依赖性

IF 1.4 3区 数学 Q2 STATISTICS & PROBABILITY Journal of Multivariate Analysis Pub Date : 2023-11-30 DOI:10.1016/j.jmva.2023.105266
Sebastian Fuchs
{"title":"通过降维量化有向依赖性","authors":"Sebastian Fuchs","doi":"10.1016/j.jmva.2023.105266","DOIUrl":null,"url":null,"abstract":"<div><p>Studying the multivariate extension of copula correlation yields a dimension reduction principle, which turns out to be strongly related with the ‘simple measure of conditional dependence’ <span><math><mi>T</mi></math></span> recently introduced by Azadkia and Chatterjee (2021). In the present paper, we identify and investigate the dependence structure underlying this dimension reduction principle, provide a strongly consistent estimator for it, and demonstrate its broad applicability. For that purpose, we define a bivariate copula capturing the scale-invariant extent of dependence of an endogenous random variable <span><math><mi>Y</mi></math></span> on a set of <span><math><mrow><mi>d</mi><mo>≥</mo><mn>1</mn></mrow></math></span> exogenous random variables <span><math><mrow><mi>X</mi><mo>=</mo><mrow><mo>(</mo><msub><mrow><mi>X</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>X</mi></mrow><mrow><mi>d</mi></mrow></msub><mo>)</mo></mrow></mrow></math></span>, and containing the information whether <span><math><mi>Y</mi></math></span> is completely dependent on <span><math><mi>X</mi></math></span>, and whether <span><math><mi>Y</mi></math></span> and <span><math><mi>X</mi></math></span> are independent. The dimension reduction principle becomes apparent insofar as the introduced bivariate copula can be viewed as the distribution function of two random variables <span><math><mi>Y</mi></math></span> and <span><math><msup><mrow><mi>Y</mi></mrow><mrow><mo>′</mo></mrow></msup></math></span> sharing the same conditional distribution and being conditionally independent given <span><math><mi>X</mi></math></span>. Evaluating this copula uniformly along the diagonal, i.e., calculating Spearman’s footrule, leads to an unconditional version of Azadkia and Chatterjee’s ‘simple measure of conditional dependence’ <span><math><mi>T</mi></math></span>. On the other hand, evaluating this copula uniformly over the unit square, i.e., calculating Spearman’s rho, leads to a distribution-free coefficient of determination (also known as ‘copula correlation’). Several real data examples illustrate the importance of the introduced methodology.</p></div>","PeriodicalId":16431,"journal":{"name":"Journal of Multivariate Analysis","volume":"201 ","pages":"Article 105266"},"PeriodicalIF":1.4000,"publicationDate":"2023-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0047259X23001124/pdfft?md5=f31ac61da24cd2b73ec43ea69b45dbc2&pid=1-s2.0-S0047259X23001124-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Quantifying directed dependence via dimension reduction\",\"authors\":\"Sebastian Fuchs\",\"doi\":\"10.1016/j.jmva.2023.105266\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Studying the multivariate extension of copula correlation yields a dimension reduction principle, which turns out to be strongly related with the ‘simple measure of conditional dependence’ <span><math><mi>T</mi></math></span> recently introduced by Azadkia and Chatterjee (2021). In the present paper, we identify and investigate the dependence structure underlying this dimension reduction principle, provide a strongly consistent estimator for it, and demonstrate its broad applicability. For that purpose, we define a bivariate copula capturing the scale-invariant extent of dependence of an endogenous random variable <span><math><mi>Y</mi></math></span> on a set of <span><math><mrow><mi>d</mi><mo>≥</mo><mn>1</mn></mrow></math></span> exogenous random variables <span><math><mrow><mi>X</mi><mo>=</mo><mrow><mo>(</mo><msub><mrow><mi>X</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>X</mi></mrow><mrow><mi>d</mi></mrow></msub><mo>)</mo></mrow></mrow></math></span>, and containing the information whether <span><math><mi>Y</mi></math></span> is completely dependent on <span><math><mi>X</mi></math></span>, and whether <span><math><mi>Y</mi></math></span> and <span><math><mi>X</mi></math></span> are independent. The dimension reduction principle becomes apparent insofar as the introduced bivariate copula can be viewed as the distribution function of two random variables <span><math><mi>Y</mi></math></span> and <span><math><msup><mrow><mi>Y</mi></mrow><mrow><mo>′</mo></mrow></msup></math></span> sharing the same conditional distribution and being conditionally independent given <span><math><mi>X</mi></math></span>. Evaluating this copula uniformly along the diagonal, i.e., calculating Spearman’s footrule, leads to an unconditional version of Azadkia and Chatterjee’s ‘simple measure of conditional dependence’ <span><math><mi>T</mi></math></span>. On the other hand, evaluating this copula uniformly over the unit square, i.e., calculating Spearman’s rho, leads to a distribution-free coefficient of determination (also known as ‘copula correlation’). Several real data examples illustrate the importance of the introduced methodology.</p></div>\",\"PeriodicalId\":16431,\"journal\":{\"name\":\"Journal of Multivariate Analysis\",\"volume\":\"201 \",\"pages\":\"Article 105266\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2023-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0047259X23001124/pdfft?md5=f31ac61da24cd2b73ec43ea69b45dbc2&pid=1-s2.0-S0047259X23001124-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Multivariate Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0047259X23001124\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Multivariate Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0047259X23001124","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

研究copula相关的多变量扩展产生了一个降维原理,这与Azadkia和Chatterjee(2021)最近提出的“条件依赖的简单测量”T密切相关。在本文中,我们识别并研究了这一降维原理的依赖结构,给出了它的一个强一致估计量,并证明了它的广泛适用性。为此,我们定义了一个二元联结公式,它捕获了一个内生随机变量Y对一组d≥1个外生随机变量X=(X1,…,Xd)的尺度不变依赖程度,并包含了Y是否完全依赖于X,以及Y和X是否独立的信息。降维原理是显而易见的,因为引入的二元联结可以看作是两个随机变量Y和Y '的分布函数,它们共享相同的条件分布,并且给定x是条件独立的。沿着对角线均匀地评估这个联结,即计算Spearman的footrule,导致Azadkia和Chatterjee的“条件依赖的简单度量”t的无条件版本。在单位平方上均匀地评估这个联结,即计算斯皮尔曼的rho,可以得到一个无分布的决定系数(也称为“联结相关”)。几个真实的数据例子说明了所介绍的方法的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Quantifying directed dependence via dimension reduction

Studying the multivariate extension of copula correlation yields a dimension reduction principle, which turns out to be strongly related with the ‘simple measure of conditional dependence’ T recently introduced by Azadkia and Chatterjee (2021). In the present paper, we identify and investigate the dependence structure underlying this dimension reduction principle, provide a strongly consistent estimator for it, and demonstrate its broad applicability. For that purpose, we define a bivariate copula capturing the scale-invariant extent of dependence of an endogenous random variable Y on a set of d1 exogenous random variables X=(X1,,Xd), and containing the information whether Y is completely dependent on X, and whether Y and X are independent. The dimension reduction principle becomes apparent insofar as the introduced bivariate copula can be viewed as the distribution function of two random variables Y and Y sharing the same conditional distribution and being conditionally independent given X. Evaluating this copula uniformly along the diagonal, i.e., calculating Spearman’s footrule, leads to an unconditional version of Azadkia and Chatterjee’s ‘simple measure of conditional dependence’ T. On the other hand, evaluating this copula uniformly over the unit square, i.e., calculating Spearman’s rho, leads to a distribution-free coefficient of determination (also known as ‘copula correlation’). Several real data examples illustrate the importance of the introduced methodology.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Multivariate Analysis
Journal of Multivariate Analysis 数学-统计学与概率论
CiteScore
2.40
自引率
25.00%
发文量
108
审稿时长
74 days
期刊介绍: Founded in 1971, the Journal of Multivariate Analysis (JMVA) is the central venue for the publication of new, relevant methodology and particularly innovative applications pertaining to the analysis and interpretation of multidimensional data. The journal welcomes contributions to all aspects of multivariate data analysis and modeling, including cluster analysis, discriminant analysis, factor analysis, and multidimensional continuous or discrete distribution theory. Topics of current interest include, but are not limited to, inferential aspects of Copula modeling Functional data analysis Graphical modeling High-dimensional data analysis Image analysis Multivariate extreme-value theory Sparse modeling Spatial statistics.
期刊最新文献
Maximum likelihood estimation of elliptical tail Covariance parameter estimation of Gaussian processes with approximated functional inputs PDE-regularised spatial quantile regression Diagnostic checking of periodic vector autoregressive time series models with dependent errors A conditional distribution function-based measure for independence and K-sample tests in multivariate data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1