有机改性剂对无机锡钙钛矿电可调性的影响

IF 7.9 2区 综合性期刊 Q1 CHEMISTRY, MULTIDISCIPLINARY Cell Reports Physical Science Pub Date : 2023-11-27 DOI:10.1016/j.xcrp.2023.101703
Md Azimul Haque, Tong Zhu, Luis Huerta Hernandez, Roba Tounesi, Craig Combe, Bambar Davaasuren, Abdul-Hamid Emwas, F. Pelayo García de Arquer, Edward H. Sargent, Derya Baran
{"title":"有机改性剂对无机锡钙钛矿电可调性的影响","authors":"Md Azimul Haque, Tong Zhu, Luis Huerta Hernandez, Roba Tounesi, Craig Combe, Bambar Davaasuren, Abdul-Hamid Emwas, F. Pelayo García de Arquer, Edward H. Sargent, Derya Baran","doi":"10.1016/j.xcrp.2023.101703","DOIUrl":null,"url":null,"abstract":"<p>Achieving control over the transport properties of charge carriers is a crucial aspect of realizing high-performance electronic materials. In metal-halide perovskites, which offer convenient manufacturing traits and tunability for certain optoelectronic applications, this is challenging: the perovskite structure itself poses fundamental limits to maximum dopant incorporation. Here, we demonstrate an organic modifier incorporation strategy capable of modulating the electronic density of states in halide tin perovskites without altering the perovskite lattice, in a similar fashion to substitutional doping in traditional semiconductors. By incorporating organic small molecules and conjugated polymers into cesium tin iodide (CsSnI<sub>3</sub>) perovskites, we achieve carrier density tunability over 2.7 decades, transition from a temperature-dependent semiconducting to a metallic nature, and high electrical conductivity exceeding 200 S/cm. We leverage these tunable and enhanced electronic properties to achieve a thin-film, lead-free, thermoelectric material with a near room temperature figure of merit of 0.21.</p>","PeriodicalId":9703,"journal":{"name":"Cell Reports Physical Science","volume":"146 ","pages":""},"PeriodicalIF":7.9000,"publicationDate":"2023-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Electrical tunability of inorganic tin perovskites enabled by organic modifiers\",\"authors\":\"Md Azimul Haque, Tong Zhu, Luis Huerta Hernandez, Roba Tounesi, Craig Combe, Bambar Davaasuren, Abdul-Hamid Emwas, F. Pelayo García de Arquer, Edward H. Sargent, Derya Baran\",\"doi\":\"10.1016/j.xcrp.2023.101703\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Achieving control over the transport properties of charge carriers is a crucial aspect of realizing high-performance electronic materials. In metal-halide perovskites, which offer convenient manufacturing traits and tunability for certain optoelectronic applications, this is challenging: the perovskite structure itself poses fundamental limits to maximum dopant incorporation. Here, we demonstrate an organic modifier incorporation strategy capable of modulating the electronic density of states in halide tin perovskites without altering the perovskite lattice, in a similar fashion to substitutional doping in traditional semiconductors. By incorporating organic small molecules and conjugated polymers into cesium tin iodide (CsSnI<sub>3</sub>) perovskites, we achieve carrier density tunability over 2.7 decades, transition from a temperature-dependent semiconducting to a metallic nature, and high electrical conductivity exceeding 200 S/cm. We leverage these tunable and enhanced electronic properties to achieve a thin-film, lead-free, thermoelectric material with a near room temperature figure of merit of 0.21.</p>\",\"PeriodicalId\":9703,\"journal\":{\"name\":\"Cell Reports Physical Science\",\"volume\":\"146 \",\"pages\":\"\"},\"PeriodicalIF\":7.9000,\"publicationDate\":\"2023-11-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell Reports Physical Science\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1016/j.xcrp.2023.101703\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Reports Physical Science","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1016/j.xcrp.2023.101703","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

实现对载流子输运特性的控制是实现高性能电子材料的一个关键方面。在金属卤化物钙钛矿中,它为某些光电应用提供了方便的制造特性和可调性,这是具有挑战性的:钙钛矿结构本身对最大掺杂量构成了基本限制。在这里,我们展示了一种有机改性剂掺入策略,能够在不改变钙钛矿晶格的情况下调制卤化锡钙钛矿中的电子态密度,其方式与传统半导体中的取代掺杂类似。通过将有机小分子和共轭聚合物掺入碘化锡铯(CsSnI3)钙钛矿中,我们实现了载流子密度可调2.7年,从依赖温度的半导体性质转变为金属性质,以及超过200 S/cm的高导电性。我们利用这些可调谐和增强的电子特性来实现薄膜,无铅,热电材料,其接近室温的优点系数为0.21。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Electrical tunability of inorganic tin perovskites enabled by organic modifiers

Achieving control over the transport properties of charge carriers is a crucial aspect of realizing high-performance electronic materials. In metal-halide perovskites, which offer convenient manufacturing traits and tunability for certain optoelectronic applications, this is challenging: the perovskite structure itself poses fundamental limits to maximum dopant incorporation. Here, we demonstrate an organic modifier incorporation strategy capable of modulating the electronic density of states in halide tin perovskites without altering the perovskite lattice, in a similar fashion to substitutional doping in traditional semiconductors. By incorporating organic small molecules and conjugated polymers into cesium tin iodide (CsSnI3) perovskites, we achieve carrier density tunability over 2.7 decades, transition from a temperature-dependent semiconducting to a metallic nature, and high electrical conductivity exceeding 200 S/cm. We leverage these tunable and enhanced electronic properties to achieve a thin-film, lead-free, thermoelectric material with a near room temperature figure of merit of 0.21.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cell Reports Physical Science
Cell Reports Physical Science Energy-Energy (all)
CiteScore
11.40
自引率
2.20%
发文量
388
审稿时长
62 days
期刊介绍: Cell Reports Physical Science, a premium open-access journal from Cell Press, features high-quality, cutting-edge research spanning the physical sciences. It serves as an open forum fostering collaboration among physical scientists while championing open science principles. Published works must signify significant advancements in fundamental insight or technological applications within fields such as chemistry, physics, materials science, energy science, engineering, and related interdisciplinary studies. In addition to longer articles, the journal considers impactful short-form reports and short reviews covering recent literature in emerging fields. Continually adapting to the evolving open science landscape, the journal reviews its policies to align with community consensus and best practices.
期刊最新文献
Amino acid-dependent phase equilibrium and material properties of tetrapeptide condensates. Paper microfluidic sentinel sensors enable rapid and on-site wastewater surveillance in community settings Catalyzing deep decarbonization with federated battery diagnosis and prognosis for better data management in energy storage systems 4.8-V all-solid-state garnet-based lithium-metal batteries with stable interface Deformation of collagen-based tissues investigated using a systematic review and meta-analysis of synchrotron x-ray scattering studies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1