Mathieu de Lafontaine, Thomas Bidaud, Guillaume Gay, Erwine Pargon, Camille Petit-Etienne, Artur Turala, Romain Stricher, Serge Ecoffey, Maïté Volatier, Abdelatif Jaouad, Christopher E. Valdivia, Karin Hinzer, Simon Fafard, Vincent Aimez, Maxime Darnon
{"title":"用于小型化功率器件的III-V型半导体异质结构的三维互连","authors":"Mathieu de Lafontaine, Thomas Bidaud, Guillaume Gay, Erwine Pargon, Camille Petit-Etienne, Artur Turala, Romain Stricher, Serge Ecoffey, Maïté Volatier, Abdelatif Jaouad, Christopher E. Valdivia, Karin Hinzer, Simon Fafard, Vincent Aimez, Maxime Darnon","doi":"10.1016/j.xcrp.2023.101701","DOIUrl":null,"url":null,"abstract":"<p>Three-dimensional (3D) interconnects increase chip power density and enable miniaturization. Photonic chips require new processes to enable transitioning to 3D interconnects. We fabricate 3D interconnects on a multijunction solar cell, leveraging processes such as III-V heterostructure plasma etching, gold electrodeposition, and chemical-mechanical polishing to integrate through substrate vias to the heterostructure. Wafer bonding is used to handle 20-μm-thin III-V films. The strategy enables us to demonstrate photonic power devices having areas 3 orders of magnitude smaller compared to standard chips. The design also yields a small shading factor below 3%. Compared to miniaturized photonic power devices with two-dimensional connections, 3D interconnects achieve a 6-fold increase in wafer area use. These improvements will enhance the power yield per wafer while unlocking high-density and miniaturized devices for applications such as power over fiber, the internet of things, and microconcentrator photovoltaics.</p>","PeriodicalId":9703,"journal":{"name":"Cell Reports Physical Science","volume":"131 ","pages":""},"PeriodicalIF":7.9000,"publicationDate":"2023-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"3D interconnects for III-V semiconductor heterostructures for miniaturized power devices\",\"authors\":\"Mathieu de Lafontaine, Thomas Bidaud, Guillaume Gay, Erwine Pargon, Camille Petit-Etienne, Artur Turala, Romain Stricher, Serge Ecoffey, Maïté Volatier, Abdelatif Jaouad, Christopher E. Valdivia, Karin Hinzer, Simon Fafard, Vincent Aimez, Maxime Darnon\",\"doi\":\"10.1016/j.xcrp.2023.101701\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Three-dimensional (3D) interconnects increase chip power density and enable miniaturization. Photonic chips require new processes to enable transitioning to 3D interconnects. We fabricate 3D interconnects on a multijunction solar cell, leveraging processes such as III-V heterostructure plasma etching, gold electrodeposition, and chemical-mechanical polishing to integrate through substrate vias to the heterostructure. Wafer bonding is used to handle 20-μm-thin III-V films. The strategy enables us to demonstrate photonic power devices having areas 3 orders of magnitude smaller compared to standard chips. The design also yields a small shading factor below 3%. Compared to miniaturized photonic power devices with two-dimensional connections, 3D interconnects achieve a 6-fold increase in wafer area use. These improvements will enhance the power yield per wafer while unlocking high-density and miniaturized devices for applications such as power over fiber, the internet of things, and microconcentrator photovoltaics.</p>\",\"PeriodicalId\":9703,\"journal\":{\"name\":\"Cell Reports Physical Science\",\"volume\":\"131 \",\"pages\":\"\"},\"PeriodicalIF\":7.9000,\"publicationDate\":\"2023-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell Reports Physical Science\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1016/j.xcrp.2023.101701\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Reports Physical Science","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1016/j.xcrp.2023.101701","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
3D interconnects for III-V semiconductor heterostructures for miniaturized power devices
Three-dimensional (3D) interconnects increase chip power density and enable miniaturization. Photonic chips require new processes to enable transitioning to 3D interconnects. We fabricate 3D interconnects on a multijunction solar cell, leveraging processes such as III-V heterostructure plasma etching, gold electrodeposition, and chemical-mechanical polishing to integrate through substrate vias to the heterostructure. Wafer bonding is used to handle 20-μm-thin III-V films. The strategy enables us to demonstrate photonic power devices having areas 3 orders of magnitude smaller compared to standard chips. The design also yields a small shading factor below 3%. Compared to miniaturized photonic power devices with two-dimensional connections, 3D interconnects achieve a 6-fold increase in wafer area use. These improvements will enhance the power yield per wafer while unlocking high-density and miniaturized devices for applications such as power over fiber, the internet of things, and microconcentrator photovoltaics.
期刊介绍:
Cell Reports Physical Science, a premium open-access journal from Cell Press, features high-quality, cutting-edge research spanning the physical sciences. It serves as an open forum fostering collaboration among physical scientists while championing open science principles. Published works must signify significant advancements in fundamental insight or technological applications within fields such as chemistry, physics, materials science, energy science, engineering, and related interdisciplinary studies. In addition to longer articles, the journal considers impactful short-form reports and short reviews covering recent literature in emerging fields. Continually adapting to the evolving open science landscape, the journal reviews its policies to align with community consensus and best practices.