用于小型化功率器件的III-V型半导体异质结构的三维互连

IF 7.9 2区 综合性期刊 Q1 CHEMISTRY, MULTIDISCIPLINARY Cell Reports Physical Science Pub Date : 2023-11-22 DOI:10.1016/j.xcrp.2023.101701
Mathieu de Lafontaine, Thomas Bidaud, Guillaume Gay, Erwine Pargon, Camille Petit-Etienne, Artur Turala, Romain Stricher, Serge Ecoffey, Maïté Volatier, Abdelatif Jaouad, Christopher E. Valdivia, Karin Hinzer, Simon Fafard, Vincent Aimez, Maxime Darnon
{"title":"用于小型化功率器件的III-V型半导体异质结构的三维互连","authors":"Mathieu de Lafontaine, Thomas Bidaud, Guillaume Gay, Erwine Pargon, Camille Petit-Etienne, Artur Turala, Romain Stricher, Serge Ecoffey, Maïté Volatier, Abdelatif Jaouad, Christopher E. Valdivia, Karin Hinzer, Simon Fafard, Vincent Aimez, Maxime Darnon","doi":"10.1016/j.xcrp.2023.101701","DOIUrl":null,"url":null,"abstract":"<p>Three-dimensional (3D) interconnects increase chip power density and enable miniaturization. Photonic chips require new processes to enable transitioning to 3D interconnects. We fabricate 3D interconnects on a multijunction solar cell, leveraging processes such as III-V heterostructure plasma etching, gold electrodeposition, and chemical-mechanical polishing to integrate through substrate vias to the heterostructure. Wafer bonding is used to handle 20-μm-thin III-V films. The strategy enables us to demonstrate photonic power devices having areas 3 orders of magnitude smaller compared to standard chips. The design also yields a small shading factor below 3%. Compared to miniaturized photonic power devices with two-dimensional connections, 3D interconnects achieve a 6-fold increase in wafer area use. These improvements will enhance the power yield per wafer while unlocking high-density and miniaturized devices for applications such as power over fiber, the internet of things, and microconcentrator photovoltaics.</p>","PeriodicalId":9703,"journal":{"name":"Cell Reports Physical Science","volume":"131 ","pages":""},"PeriodicalIF":7.9000,"publicationDate":"2023-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"3D interconnects for III-V semiconductor heterostructures for miniaturized power devices\",\"authors\":\"Mathieu de Lafontaine, Thomas Bidaud, Guillaume Gay, Erwine Pargon, Camille Petit-Etienne, Artur Turala, Romain Stricher, Serge Ecoffey, Maïté Volatier, Abdelatif Jaouad, Christopher E. Valdivia, Karin Hinzer, Simon Fafard, Vincent Aimez, Maxime Darnon\",\"doi\":\"10.1016/j.xcrp.2023.101701\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Three-dimensional (3D) interconnects increase chip power density and enable miniaturization. Photonic chips require new processes to enable transitioning to 3D interconnects. We fabricate 3D interconnects on a multijunction solar cell, leveraging processes such as III-V heterostructure plasma etching, gold electrodeposition, and chemical-mechanical polishing to integrate through substrate vias to the heterostructure. Wafer bonding is used to handle 20-μm-thin III-V films. The strategy enables us to demonstrate photonic power devices having areas 3 orders of magnitude smaller compared to standard chips. The design also yields a small shading factor below 3%. Compared to miniaturized photonic power devices with two-dimensional connections, 3D interconnects achieve a 6-fold increase in wafer area use. These improvements will enhance the power yield per wafer while unlocking high-density and miniaturized devices for applications such as power over fiber, the internet of things, and microconcentrator photovoltaics.</p>\",\"PeriodicalId\":9703,\"journal\":{\"name\":\"Cell Reports Physical Science\",\"volume\":\"131 \",\"pages\":\"\"},\"PeriodicalIF\":7.9000,\"publicationDate\":\"2023-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell Reports Physical Science\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1016/j.xcrp.2023.101701\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Reports Physical Science","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1016/j.xcrp.2023.101701","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

三维(3D)互连可提高芯片功率密度并实现小型化。光子芯片需要新的工艺来实现向3D互连的过渡。我们在多结太阳能电池上制造3D互连,利用III-V异质结构等离子体蚀刻,金电沉积和化学机械抛光等工艺,通过衬底通孔集成到异质结构上。晶圆键合用于处理20 μm薄的III-V薄膜。该策略使我们能够展示光子功率器件的面积比标准芯片小3个数量级。该设计还产生了一个小的遮阳系数低于3%。与具有二维连接的小型化光子功率器件相比,3D互连实现了晶圆面积使用的6倍增长。这些改进将提高每片晶圆的功率产量,同时为光纤供电、物联网和微聚光器光伏等应用解锁高密度和小型化设备。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
3D interconnects for III-V semiconductor heterostructures for miniaturized power devices

Three-dimensional (3D) interconnects increase chip power density and enable miniaturization. Photonic chips require new processes to enable transitioning to 3D interconnects. We fabricate 3D interconnects on a multijunction solar cell, leveraging processes such as III-V heterostructure plasma etching, gold electrodeposition, and chemical-mechanical polishing to integrate through substrate vias to the heterostructure. Wafer bonding is used to handle 20-μm-thin III-V films. The strategy enables us to demonstrate photonic power devices having areas 3 orders of magnitude smaller compared to standard chips. The design also yields a small shading factor below 3%. Compared to miniaturized photonic power devices with two-dimensional connections, 3D interconnects achieve a 6-fold increase in wafer area use. These improvements will enhance the power yield per wafer while unlocking high-density and miniaturized devices for applications such as power over fiber, the internet of things, and microconcentrator photovoltaics.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cell Reports Physical Science
Cell Reports Physical Science Energy-Energy (all)
CiteScore
11.40
自引率
2.20%
发文量
388
审稿时长
62 days
期刊介绍: Cell Reports Physical Science, a premium open-access journal from Cell Press, features high-quality, cutting-edge research spanning the physical sciences. It serves as an open forum fostering collaboration among physical scientists while championing open science principles. Published works must signify significant advancements in fundamental insight or technological applications within fields such as chemistry, physics, materials science, energy science, engineering, and related interdisciplinary studies. In addition to longer articles, the journal considers impactful short-form reports and short reviews covering recent literature in emerging fields. Continually adapting to the evolving open science landscape, the journal reviews its policies to align with community consensus and best practices.
期刊最新文献
Amino acid-dependent phase equilibrium and material properties of tetrapeptide condensates. Paper microfluidic sentinel sensors enable rapid and on-site wastewater surveillance in community settings Catalyzing deep decarbonization with federated battery diagnosis and prognosis for better data management in energy storage systems 4.8-V all-solid-state garnet-based lithium-metal batteries with stable interface Deformation of collagen-based tissues investigated using a systematic review and meta-analysis of synchrotron x-ray scattering studies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1