Hussein, Aya, Elsawah, Sondoss, Petraki, Eleni, Abbass, Hussein A.
{"title":"一种机器教育方法在最优化问题中进行群体决策","authors":"Hussein, Aya, Elsawah, Sondoss, Petraki, Eleni, Abbass, Hussein A.","doi":"10.1007/s11721-021-00206-5","DOIUrl":null,"url":null,"abstract":"<p>In swarm decision making, hand-crafting agents’ rules that use local information to achieve desirable swarm-level behaviours is a non-trivial design problem. Instead of relying entirely on swarm experts for designing these local rules, machine learning (ML) algorithms can be utilised for learning some of the local rules by mapping an agent’s perception to an appropriate action. To facilitate this process, we propose the use of Machine Education (ME) as a systematic approach for designing a curriculum for teaching the agents the required skills to autonomously select appropriate behaviours. We study the use of ME in the context of decision-making in best-of-n problems. The proposed approach draws on swarm robotics expertise for identifying agents’ capabilities and limitations, the skills required for generating the desirable behaviours, and the corresponding performance measures. In addition, ME utilises ML expertise for the selection and development of the ML algorithms suitable for each skill. The results of the experimental evaluations demonstrate the superior efficacy of the ME-based approach over the state-of-the-art approaches with respect to speed and accuracy. In addition, our approach shows considerable robustness to changes in swarm size and to changes in sensing and communication noise. Our findings promote the use of ME for teaching swarm members the required skills for achieving complex swarm tasks.</p>","PeriodicalId":51284,"journal":{"name":"Swarm Intelligence","volume":"348 ","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2021-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A machine education approach to swarm decision-making in best-of-n problems\",\"authors\":\"Hussein, Aya, Elsawah, Sondoss, Petraki, Eleni, Abbass, Hussein A.\",\"doi\":\"10.1007/s11721-021-00206-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In swarm decision making, hand-crafting agents’ rules that use local information to achieve desirable swarm-level behaviours is a non-trivial design problem. Instead of relying entirely on swarm experts for designing these local rules, machine learning (ML) algorithms can be utilised for learning some of the local rules by mapping an agent’s perception to an appropriate action. To facilitate this process, we propose the use of Machine Education (ME) as a systematic approach for designing a curriculum for teaching the agents the required skills to autonomously select appropriate behaviours. We study the use of ME in the context of decision-making in best-of-n problems. The proposed approach draws on swarm robotics expertise for identifying agents’ capabilities and limitations, the skills required for generating the desirable behaviours, and the corresponding performance measures. In addition, ME utilises ML expertise for the selection and development of the ML algorithms suitable for each skill. The results of the experimental evaluations demonstrate the superior efficacy of the ME-based approach over the state-of-the-art approaches with respect to speed and accuracy. In addition, our approach shows considerable robustness to changes in swarm size and to changes in sensing and communication noise. Our findings promote the use of ME for teaching swarm members the required skills for achieving complex swarm tasks.</p>\",\"PeriodicalId\":51284,\"journal\":{\"name\":\"Swarm Intelligence\",\"volume\":\"348 \",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2021-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Swarm Intelligence\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s11721-021-00206-5\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Swarm Intelligence","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11721-021-00206-5","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
A machine education approach to swarm decision-making in best-of-n problems
In swarm decision making, hand-crafting agents’ rules that use local information to achieve desirable swarm-level behaviours is a non-trivial design problem. Instead of relying entirely on swarm experts for designing these local rules, machine learning (ML) algorithms can be utilised for learning some of the local rules by mapping an agent’s perception to an appropriate action. To facilitate this process, we propose the use of Machine Education (ME) as a systematic approach for designing a curriculum for teaching the agents the required skills to autonomously select appropriate behaviours. We study the use of ME in the context of decision-making in best-of-n problems. The proposed approach draws on swarm robotics expertise for identifying agents’ capabilities and limitations, the skills required for generating the desirable behaviours, and the corresponding performance measures. In addition, ME utilises ML expertise for the selection and development of the ML algorithms suitable for each skill. The results of the experimental evaluations demonstrate the superior efficacy of the ME-based approach over the state-of-the-art approaches with respect to speed and accuracy. In addition, our approach shows considerable robustness to changes in swarm size and to changes in sensing and communication noise. Our findings promote the use of ME for teaching swarm members the required skills for achieving complex swarm tasks.
期刊介绍:
Swarm Intelligence is the principal peer-reviewed publication dedicated to reporting on research
and developments in the multidisciplinary field of swarm intelligence. The journal publishes
original research articles and occasional review articles on theoretical, experimental and/or
practical aspects of swarm intelligence. All articles are published both in print and in electronic
form. There are no page charges for publication. Swarm Intelligence is published quarterly.
The field of swarm intelligence deals with systems composed of many individuals that coordinate
using decentralized control and self-organization. In particular, it focuses on the collective
behaviors that result from the local interactions of the individuals with each other and with their
environment. It is a fast-growing field that encompasses the efforts of researchers in multiple
disciplines, ranging from ethology and social science to operations research and computer
engineering.
Swarm Intelligence will report on advances in the understanding and utilization of swarm
intelligence systems, that is, systems that are based on the principles of swarm intelligence. The
following subjects are of particular interest to the journal:
• modeling and analysis of collective biological systems such as social insect colonies, flocking
vertebrates, and human crowds as well as any other swarm intelligence systems;
• application of biological swarm intelligence models to real-world problems such as distributed
computing, data clustering, graph partitioning, optimization and decision making;
• theoretical and empirical research in ant colony optimization, particle swarm optimization,
swarm robotics, and other swarm intelligence algorithms.