Imprecise evidence in social learning

IF 2.1 4区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Swarm Intelligence Pub Date : 2024-04-16 DOI:10.1007/s11721-024-00238-7
Zixuan Liu, Michael Crosscombe, Jonathan Lawry
{"title":"Imprecise evidence in social learning","authors":"Zixuan Liu, Michael Crosscombe, Jonathan Lawry","doi":"10.1007/s11721-024-00238-7","DOIUrl":null,"url":null,"abstract":"<p>Social learning is a collective approach to decentralised decision-making and is comprised of two processes; evidence updating and belief fusion. In this paper we propose a social learning model in which agents’ beliefs are represented by a set of possible states, and where the evidence collected can vary in its level of imprecision. We investigate this model using multi-agent and multi-robot simulations and demonstrate that it is robust to imprecise evidence. Our results also show that certain kinds of imprecise evidence can enhance the efficacy of the learning process in the presence of sensor errors.</p>","PeriodicalId":51284,"journal":{"name":"Swarm Intelligence","volume":"3 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Swarm Intelligence","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11721-024-00238-7","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Social learning is a collective approach to decentralised decision-making and is comprised of two processes; evidence updating and belief fusion. In this paper we propose a social learning model in which agents’ beliefs are represented by a set of possible states, and where the evidence collected can vary in its level of imprecision. We investigate this model using multi-agent and multi-robot simulations and demonstrate that it is robust to imprecise evidence. Our results also show that certain kinds of imprecise evidence can enhance the efficacy of the learning process in the presence of sensor errors.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
社会学习中的不精确证据
社会学习是一种分散决策的集体方法,由两个过程组成:证据更新和信念融合。在本文中,我们提出了一种社会学习模型,在该模型中,代理的信念由一组可能的状态表示,收集到的证据可能在不精确程度上有所不同。我们利用多代理和多机器人模拟对该模型进行了研究,结果表明,该模型对不精确证据具有鲁棒性。我们的研究结果还表明,在存在传感器误差的情况下,某些类型的不精确证据可以提高学习过程的效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Swarm Intelligence
Swarm Intelligence COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-ROBOTICS
CiteScore
5.70
自引率
11.50%
发文量
11
审稿时长
>12 weeks
期刊介绍: Swarm Intelligence is the principal peer-reviewed publication dedicated to reporting on research and developments in the multidisciplinary field of swarm intelligence. The journal publishes original research articles and occasional review articles on theoretical, experimental and/or practical aspects of swarm intelligence. All articles are published both in print and in electronic form. There are no page charges for publication. Swarm Intelligence is published quarterly. The field of swarm intelligence deals with systems composed of many individuals that coordinate using decentralized control and self-organization. In particular, it focuses on the collective behaviors that result from the local interactions of the individuals with each other and with their environment. It is a fast-growing field that encompasses the efforts of researchers in multiple disciplines, ranging from ethology and social science to operations research and computer engineering. Swarm Intelligence will report on advances in the understanding and utilization of swarm intelligence systems, that is, systems that are based on the principles of swarm intelligence. The following subjects are of particular interest to the journal: • modeling and analysis of collective biological systems such as social insect colonies, flocking vertebrates, and human crowds as well as any other swarm intelligence systems; • application of biological swarm intelligence models to real-world problems such as distributed computing, data clustering, graph partitioning, optimization and decision making; • theoretical and empirical research in ant colony optimization, particle swarm optimization, swarm robotics, and other swarm intelligence algorithms.
期刊最新文献
Resilient swarm behaviors via online evolution and behavior fusion Decentralized traffic management of autonomous drones Non-uniform magnetic fields for collective behavior of self-assembled magnetic pillars The viability of domain constrained coalition formation for robotic collectives Imprecise evidence in social learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1