{"title":"基于随机缺失响应核回归插值的Mallows模型平均","authors":"Hengkun Zhu, Guohua Zou","doi":"10.1016/j.jspi.2023.106130","DOIUrl":null,"url":null,"abstract":"<div><p>Missing data is a common problem in real data analysis. In this paper, a Mallows model averaging method based on kernel regression imputation is proposed for the linear regression models with responses missing at random. We prove that our method asymptotically achieves the lowest possible squared error. Compared with the existing model averaging methods, the new method does not require the use of a parameter model to characterize the missing generation mechanism. The Monte Carlo simulation and a practical application demonstrate the usefulness of the proposed method.</p></div>","PeriodicalId":50039,"journal":{"name":"Journal of Statistical Planning and Inference","volume":"231 ","pages":"Article 106130"},"PeriodicalIF":0.8000,"publicationDate":"2023-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mallows model averaging based on kernel regression imputation with responses missing at random\",\"authors\":\"Hengkun Zhu, Guohua Zou\",\"doi\":\"10.1016/j.jspi.2023.106130\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Missing data is a common problem in real data analysis. In this paper, a Mallows model averaging method based on kernel regression imputation is proposed for the linear regression models with responses missing at random. We prove that our method asymptotically achieves the lowest possible squared error. Compared with the existing model averaging methods, the new method does not require the use of a parameter model to characterize the missing generation mechanism. The Monte Carlo simulation and a practical application demonstrate the usefulness of the proposed method.</p></div>\",\"PeriodicalId\":50039,\"journal\":{\"name\":\"Journal of Statistical Planning and Inference\",\"volume\":\"231 \",\"pages\":\"Article 106130\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Statistical Planning and Inference\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S037837582300099X\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Statistical Planning and Inference","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S037837582300099X","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
Mallows model averaging based on kernel regression imputation with responses missing at random
Missing data is a common problem in real data analysis. In this paper, a Mallows model averaging method based on kernel regression imputation is proposed for the linear regression models with responses missing at random. We prove that our method asymptotically achieves the lowest possible squared error. Compared with the existing model averaging methods, the new method does not require the use of a parameter model to characterize the missing generation mechanism. The Monte Carlo simulation and a practical application demonstrate the usefulness of the proposed method.
期刊介绍:
The Journal of Statistical Planning and Inference offers itself as a multifaceted and all-inclusive bridge between classical aspects of statistics and probability, and the emerging interdisciplinary aspects that have a potential of revolutionizing the subject. While we maintain our traditional strength in statistical inference, design, classical probability, and large sample methods, we also have a far more inclusive and broadened scope to keep up with the new problems that confront us as statisticians, mathematicians, and scientists.
We publish high quality articles in all branches of statistics, probability, discrete mathematics, machine learning, and bioinformatics. We also especially welcome well written and up to date review articles on fundamental themes of statistics, probability, machine learning, and general biostatistics. Thoughtful letters to the editors, interesting problems in need of a solution, and short notes carrying an element of elegance or beauty are equally welcome.