Al+注入SiC高温退火过程中4H到3C多型转变

IF 2.1 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Electronic Materials Letters Pub Date : 2023-12-02 DOI:10.1007/s13391-023-00473-w
L. Kuebler, E. Hershkovitz, D. Kouzminov, H.-J. Gossmann, S. Charnvanichborikarn, C. Hatem, H. Kim, K. S. Jones
{"title":"Al+注入SiC高温退火过程中4H到3C多型转变","authors":"L. Kuebler,&nbsp;E. Hershkovitz,&nbsp;D. Kouzminov,&nbsp;H.-J. Gossmann,&nbsp;S. Charnvanichborikarn,&nbsp;C. Hatem,&nbsp;H. Kim,&nbsp;K. S. Jones","doi":"10.1007/s13391-023-00473-w","DOIUrl":null,"url":null,"abstract":"<div><p>Polytypism in SiC has created interest and opportunity for device heterostructures and bandgap engineering in power electronic applications. As each SiC polytype possesses a different bandgap, electron mobility, and degree of anisotropy, unique interfaces can be created without changing its chemical composition. The 4H polytype is commonly used, but the 3C polytype offers high surface electron mobility with isotropic properties as the only cubic polytype. This has driven research on heteroepitaxy with limited success in traditional chemical vapor deposition chambers. Discussion on polytype control and stability has been restricted to bulk and epitaxial crystal growth, despite numerous reports of polytypic transformations occurring during other processing steps. This study revealed the polytypic transformation of 4H-SiC to 3C-SiC after high temperature annealing using high resolution cross-sectional transmission electron microscopy (TEM) and scanning transmission electron microscopy (STEM). Above 1750 °C, the surface significantly roughened under a reduced pressure of Ar, whereas surface planarity was maintained under Ar atmospheric pressure. The formation of 3C-SiC islands occurred adjacent to large surface pits through an epitaxial growth process for the reduced pressure condition only. Loss of SiC stoichiometry at the surface with Si enrichment and availability of on-axis terraces enabled 3C nucleation. 3C-SiC growth was retarded using a protective carbon cap (C-cap) where defect-free single crystal 3C-SiC has a coherent interface with the 4H-SiC substrate underneath. These findings demonstrate that the 3C polytype can be stable at high temperatures, encouraging the need for a better understanding of polytype stability and control.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":536,"journal":{"name":"Electronic Materials Letters","volume":"20 3","pages":"345 - 351"},"PeriodicalIF":2.1000,"publicationDate":"2023-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"4H to 3C Polytypic Transformation in Al+ Implanted SiC During High Temperature Annealing\",\"authors\":\"L. Kuebler,&nbsp;E. Hershkovitz,&nbsp;D. Kouzminov,&nbsp;H.-J. Gossmann,&nbsp;S. Charnvanichborikarn,&nbsp;C. Hatem,&nbsp;H. Kim,&nbsp;K. S. Jones\",\"doi\":\"10.1007/s13391-023-00473-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Polytypism in SiC has created interest and opportunity for device heterostructures and bandgap engineering in power electronic applications. As each SiC polytype possesses a different bandgap, electron mobility, and degree of anisotropy, unique interfaces can be created without changing its chemical composition. The 4H polytype is commonly used, but the 3C polytype offers high surface electron mobility with isotropic properties as the only cubic polytype. This has driven research on heteroepitaxy with limited success in traditional chemical vapor deposition chambers. Discussion on polytype control and stability has been restricted to bulk and epitaxial crystal growth, despite numerous reports of polytypic transformations occurring during other processing steps. This study revealed the polytypic transformation of 4H-SiC to 3C-SiC after high temperature annealing using high resolution cross-sectional transmission electron microscopy (TEM) and scanning transmission electron microscopy (STEM). Above 1750 °C, the surface significantly roughened under a reduced pressure of Ar, whereas surface planarity was maintained under Ar atmospheric pressure. The formation of 3C-SiC islands occurred adjacent to large surface pits through an epitaxial growth process for the reduced pressure condition only. Loss of SiC stoichiometry at the surface with Si enrichment and availability of on-axis terraces enabled 3C nucleation. 3C-SiC growth was retarded using a protective carbon cap (C-cap) where defect-free single crystal 3C-SiC has a coherent interface with the 4H-SiC substrate underneath. These findings demonstrate that the 3C polytype can be stable at high temperatures, encouraging the need for a better understanding of polytype stability and control.</p><h3>Graphical Abstract</h3>\\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":536,\"journal\":{\"name\":\"Electronic Materials Letters\",\"volume\":\"20 3\",\"pages\":\"345 - 351\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2023-12-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronic Materials Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s13391-023-00473-w\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Materials Letters","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s13391-023-00473-w","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

SiC的多型性为电力电子应用中的器件异质结构和带隙工程创造了兴趣和机会。由于每种SiC多型具有不同的带隙、电子迁移率和各向异性程度,因此可以在不改变其化学成分的情况下创建独特的界面。通常使用的是4H多型,但3C多型作为唯一的立方多型具有高的表面电子迁移率和各向同性。这推动了异质外延的研究,在传统的化学气相沉积室中取得了有限的成功。关于多型控制和稳定性的讨论仅限于体晶和外延晶生长,尽管在其他加工步骤中发生了许多多型转变的报道。利用高分辨率透射电镜(TEM)和扫描透射电镜(STEM)研究了高温退火后4H-SiC向3C-SiC的多型转变。在1750°C以上,在降低的Ar压力下,表面明显粗糙化,而在Ar大气压下,表面保持平面。仅在减压条件下,通过外延生长过程,在大表面凹坑附近形成了3C-SiC岛。表面SiC化学计量的损失与Si富集和轴上梯田的可用性使3C成核。采用保护性碳帽(C-cap)可以延缓3C-SiC的生长,其中无缺陷的3C-SiC单晶与下面的4H-SiC衬底具有相干界面。这些发现表明3C多型在高温下是稳定的,这鼓励了对多型稳定性和控制的更好理解的需要。图形抽象
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
4H to 3C Polytypic Transformation in Al+ Implanted SiC During High Temperature Annealing

Polytypism in SiC has created interest and opportunity for device heterostructures and bandgap engineering in power electronic applications. As each SiC polytype possesses a different bandgap, electron mobility, and degree of anisotropy, unique interfaces can be created without changing its chemical composition. The 4H polytype is commonly used, but the 3C polytype offers high surface electron mobility with isotropic properties as the only cubic polytype. This has driven research on heteroepitaxy with limited success in traditional chemical vapor deposition chambers. Discussion on polytype control and stability has been restricted to bulk and epitaxial crystal growth, despite numerous reports of polytypic transformations occurring during other processing steps. This study revealed the polytypic transformation of 4H-SiC to 3C-SiC after high temperature annealing using high resolution cross-sectional transmission electron microscopy (TEM) and scanning transmission electron microscopy (STEM). Above 1750 °C, the surface significantly roughened under a reduced pressure of Ar, whereas surface planarity was maintained under Ar atmospheric pressure. The formation of 3C-SiC islands occurred adjacent to large surface pits through an epitaxial growth process for the reduced pressure condition only. Loss of SiC stoichiometry at the surface with Si enrichment and availability of on-axis terraces enabled 3C nucleation. 3C-SiC growth was retarded using a protective carbon cap (C-cap) where defect-free single crystal 3C-SiC has a coherent interface with the 4H-SiC substrate underneath. These findings demonstrate that the 3C polytype can be stable at high temperatures, encouraging the need for a better understanding of polytype stability and control.

Graphical Abstract

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Electronic Materials Letters
Electronic Materials Letters 工程技术-材料科学:综合
CiteScore
4.70
自引率
20.80%
发文量
52
审稿时长
2.3 months
期刊介绍: Electronic Materials Letters is an official journal of the Korean Institute of Metals and Materials. It is a peer-reviewed international journal publishing print and online version. It covers all disciplines of research and technology in electronic materials. Emphasis is placed on science, engineering and applications of advanced materials, including electronic, magnetic, optical, organic, electrochemical, mechanical, and nanoscale materials. The aspects of synthesis and processing include thin films, nanostructures, self assembly, and bulk, all related to thermodynamics, kinetics and/or modeling.
期刊最新文献
Impact of Crystal Domain on Electrical Performance and Bending Durability of Flexible Organic Thin-Film Transistors with diF-TES-ADT Semiconductor All-Cobalt-Free Layered/Olivine Mixed Cathode Material for High-Electrode Density and Enhanced Cycle-Life Performance High-speed and Sub-ppm Detectable Tellurene NO2 Chemiresistive Room-Temperature Sensor under Humidity Environments A Neural Network Approach for Health State Estimation of Lithium-Ion Batteries Incorporating Physics Knowledge Enhanced Magnetic Permeability Through Improved Packing Density for Thin-Film Type Power Inductors for High-Frequency Applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1