洪水数据的社会化媒体整合:基于Vine copula的方法

IF 6 1区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES Journal of Environmental Informatics Pub Date : 2022-01-08 DOI:10.3808/jei.202200471
L. Ansell, L. Dalla Valle
{"title":"洪水数据的社会化媒体整合:基于Vine copula的方法","authors":"L. Ansell, L. Dalla Valle","doi":"10.3808/jei.202200471","DOIUrl":null,"url":null,"abstract":"Floods are the most common and among the most severe natural disasters in many countries around the world. As global warming continues to exacerbate sea level rise and extreme weather, governmental authorities and environmental agencies are facing the pressing need of timely and accurate evaluations and predictions of flood risks. Current flood forecasts are generally based on historical measurements of environmental variables at monitoring stations. In recent years, in addition to traditional data sources, large amounts of information related to floods have been made available via social media. Members of the public are constantly and promptly posting information and updates on local environmental phenomena on social media platforms. Despite the growing interest of scholars towards the usage of online data during natural disasters, the majority of studies focus exclusively on social media as a stand-alone data source, while its joint use with other type of information is still unexplored. In this paper we propose to fill this gap by integrating traditional historical information on floods with data extracted by Twitter and Google Trends. Our methodology is based on vine copulas, that allow us to capture the dependence structure among the marginals, which are modelled via appropriate time series methods, in a very flexible way. We apply our methodology to data related to three different coastal locations on the South coast of the United Kingdom (UK). The results show that our approach, based on the integration of social media data, outperforms traditional methods in terms of evaluation and prediction of flood events.\n","PeriodicalId":54840,"journal":{"name":"Journal of Environmental Informatics","volume":"25 1 1","pages":""},"PeriodicalIF":6.0000,"publicationDate":"2022-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Social Media Integration of Flood Data: A Vine Copula-Based Approach\",\"authors\":\"L. Ansell, L. Dalla Valle\",\"doi\":\"10.3808/jei.202200471\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Floods are the most common and among the most severe natural disasters in many countries around the world. As global warming continues to exacerbate sea level rise and extreme weather, governmental authorities and environmental agencies are facing the pressing need of timely and accurate evaluations and predictions of flood risks. Current flood forecasts are generally based on historical measurements of environmental variables at monitoring stations. In recent years, in addition to traditional data sources, large amounts of information related to floods have been made available via social media. Members of the public are constantly and promptly posting information and updates on local environmental phenomena on social media platforms. Despite the growing interest of scholars towards the usage of online data during natural disasters, the majority of studies focus exclusively on social media as a stand-alone data source, while its joint use with other type of information is still unexplored. In this paper we propose to fill this gap by integrating traditional historical information on floods with data extracted by Twitter and Google Trends. Our methodology is based on vine copulas, that allow us to capture the dependence structure among the marginals, which are modelled via appropriate time series methods, in a very flexible way. We apply our methodology to data related to three different coastal locations on the South coast of the United Kingdom (UK). The results show that our approach, based on the integration of social media data, outperforms traditional methods in terms of evaluation and prediction of flood events.\\n\",\"PeriodicalId\":54840,\"journal\":{\"name\":\"Journal of Environmental Informatics\",\"volume\":\"25 1 1\",\"pages\":\"\"},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2022-01-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Environmental Informatics\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.3808/jei.202200471\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Environmental Informatics","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.3808/jei.202200471","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

洪水是世界上许多国家最常见和最严重的自然灾害之一。随着全球变暖不断加剧海平面上升和极端天气,政府部门和环境机构迫切需要及时准确地评估和预测洪水风险。目前的洪水预报一般是基于监测站对环境变量的历史测量。近年来,除了传统的数据来源外,大量与洪水有关的信息已经通过社交媒体提供。市民经常在社交媒体平台上发布有关本地环境现象的资讯和最新消息。尽管学者们对自然灾害期间在线数据的使用越来越感兴趣,但大多数研究只关注社交媒体作为一个独立的数据源,而与其他类型的信息的联合使用仍未进行探索。在本文中,我们建议通过将传统的洪水历史信息与Twitter和Google Trends提取的数据相结合来填补这一空白。我们的方法是基于vine copulas,这使我们能够通过适当的时间序列方法以非常灵活的方式捕获边缘之间的依赖结构。我们将我们的方法应用于与英国(英国)南海岸三个不同沿海地点相关的数据。结果表明,基于社交媒体数据整合的方法在洪水事件评估和预测方面优于传统方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Social Media Integration of Flood Data: A Vine Copula-Based Approach
Floods are the most common and among the most severe natural disasters in many countries around the world. As global warming continues to exacerbate sea level rise and extreme weather, governmental authorities and environmental agencies are facing the pressing need of timely and accurate evaluations and predictions of flood risks. Current flood forecasts are generally based on historical measurements of environmental variables at monitoring stations. In recent years, in addition to traditional data sources, large amounts of information related to floods have been made available via social media. Members of the public are constantly and promptly posting information and updates on local environmental phenomena on social media platforms. Despite the growing interest of scholars towards the usage of online data during natural disasters, the majority of studies focus exclusively on social media as a stand-alone data source, while its joint use with other type of information is still unexplored. In this paper we propose to fill this gap by integrating traditional historical information on floods with data extracted by Twitter and Google Trends. Our methodology is based on vine copulas, that allow us to capture the dependence structure among the marginals, which are modelled via appropriate time series methods, in a very flexible way. We apply our methodology to data related to three different coastal locations on the South coast of the United Kingdom (UK). The results show that our approach, based on the integration of social media data, outperforms traditional methods in terms of evaluation and prediction of flood events.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Environmental Informatics
Journal of Environmental Informatics ENVIRONMENTAL SCIENCES-
CiteScore
12.40
自引率
2.90%
发文量
7
审稿时长
24 months
期刊介绍: Journal of Environmental Informatics (JEI) is an international, peer-reviewed, and interdisciplinary publication designed to foster research innovation and discovery on basic science and information technology for addressing various environmental problems. The journal aims to motivate and enhance the integration of science and technology to help develop sustainable solutions that are consensus-oriented, risk-informed, scientifically-based and cost-effective. JEI serves researchers, educators and practitioners who are interested in theoretical and/or applied aspects of environmental science, regardless of disciplinary boundaries. The topics addressed by the journal include: - Planning of energy, environmental and ecological management systems - Simulation, optimization and Environmental decision support - Environmental geomatics - GIS, RS and other spatial information technologies - Informatics for environmental chemistry and biochemistry - Environmental applications of functional materials - Environmental phenomena at atomic, molecular and macromolecular scales - Modeling of chemical, biological and environmental processes - Modeling of biotechnological systems for enhanced pollution mitigation - Computer graphics and visualization for environmental decision support - Artificial intelligence and expert systems for environmental applications - Environmental statistics and risk analysis - Climate modeling, downscaling, impact assessment, and adaptation planning - Other areas of environmental systems science and information technology.
期刊最新文献
Modelling Soil δ13C across the Tibetan Plateau Using Deep-Learning Impact of Carbon Emissions and Advance Payment on Optimal Decisions for Perishable Products via Parametric Approach of Interval Prediction of the Breeding and Wintering Ranges of Pomacea canaliculata in China Using Ensemble Models Decentralized Algae Removal Technologies for Lake Diefenbaker Irrigation Canals: A Review Real-Time LNG Buses Emissions Prediction Based on a Temporal Fusion Trans-Formers Model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1