{"title":"基于仿真的水动力空化反应器高级氧化能力多目标优化方法研究——以自激振荡腔为例","authors":"S. L. Nie, J. K. Zhou, H. Ji, Z. Y. Dai, Z. H. Ma","doi":"10.3808/jei.202200474","DOIUrl":null,"url":null,"abstract":"In this study, a simulation-based multi-objective optimization method is developed for optimizing the structural design of hydrodynamic cavitation (HC) reactor and improving the cavitation effect of HC reactor. The developed method integrates simulation technique of computational fluid dynamics (CFD) and optimization techniques of surrogate model and nondominated sorting genetic algorithm II (NSGA-II) into a general framework. The effect of structure parameters and their interactions on the cavitation effect of the self-excited oscillation cavity (SEOC) are analyzed. Results demonstrate that optimization techniques of surrogate model and NSGA-II can effectively improve the structure and the capacity of SEOC. Simulation results show that the internal vapor volume fraction and outlet vapor volume fraction of SEOC (based on the optimized structure) increase by 13.46 and 38.01%, respectively. The optimized structure of SEOC is also verified experimentally through the degradation experiment of methylene blue solution. The degrees of degra-dation before and after optimization respectively are 10.12 and 16.14%, and the degradation capacity increases by 59.5%. This study will play a significantly guiding role on the optimization design of HC reactor for advanced oxidation processes (AOPs) to obtain the preferable cavitation effect.\n","PeriodicalId":54840,"journal":{"name":"Journal of Environmental Informatics","volume":"75 5-6","pages":""},"PeriodicalIF":6.0000,"publicationDate":"2022-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development of A Simulation-Based Multi-Objective Optimization Method for Improving the Advanced Oxidizing Capacity of Hydrodynamic Cavitation Reactor - A Case Study of Self-Excited Oscillation Cavity\",\"authors\":\"S. L. Nie, J. K. Zhou, H. Ji, Z. Y. Dai, Z. H. Ma\",\"doi\":\"10.3808/jei.202200474\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, a simulation-based multi-objective optimization method is developed for optimizing the structural design of hydrodynamic cavitation (HC) reactor and improving the cavitation effect of HC reactor. The developed method integrates simulation technique of computational fluid dynamics (CFD) and optimization techniques of surrogate model and nondominated sorting genetic algorithm II (NSGA-II) into a general framework. The effect of structure parameters and their interactions on the cavitation effect of the self-excited oscillation cavity (SEOC) are analyzed. Results demonstrate that optimization techniques of surrogate model and NSGA-II can effectively improve the structure and the capacity of SEOC. Simulation results show that the internal vapor volume fraction and outlet vapor volume fraction of SEOC (based on the optimized structure) increase by 13.46 and 38.01%, respectively. The optimized structure of SEOC is also verified experimentally through the degradation experiment of methylene blue solution. The degrees of degra-dation before and after optimization respectively are 10.12 and 16.14%, and the degradation capacity increases by 59.5%. This study will play a significantly guiding role on the optimization design of HC reactor for advanced oxidation processes (AOPs) to obtain the preferable cavitation effect.\\n\",\"PeriodicalId\":54840,\"journal\":{\"name\":\"Journal of Environmental Informatics\",\"volume\":\"75 5-6\",\"pages\":\"\"},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2022-01-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Environmental Informatics\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.3808/jei.202200474\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Environmental Informatics","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.3808/jei.202200474","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Development of A Simulation-Based Multi-Objective Optimization Method for Improving the Advanced Oxidizing Capacity of Hydrodynamic Cavitation Reactor - A Case Study of Self-Excited Oscillation Cavity
In this study, a simulation-based multi-objective optimization method is developed for optimizing the structural design of hydrodynamic cavitation (HC) reactor and improving the cavitation effect of HC reactor. The developed method integrates simulation technique of computational fluid dynamics (CFD) and optimization techniques of surrogate model and nondominated sorting genetic algorithm II (NSGA-II) into a general framework. The effect of structure parameters and their interactions on the cavitation effect of the self-excited oscillation cavity (SEOC) are analyzed. Results demonstrate that optimization techniques of surrogate model and NSGA-II can effectively improve the structure and the capacity of SEOC. Simulation results show that the internal vapor volume fraction and outlet vapor volume fraction of SEOC (based on the optimized structure) increase by 13.46 and 38.01%, respectively. The optimized structure of SEOC is also verified experimentally through the degradation experiment of methylene blue solution. The degrees of degra-dation before and after optimization respectively are 10.12 and 16.14%, and the degradation capacity increases by 59.5%. This study will play a significantly guiding role on the optimization design of HC reactor for advanced oxidation processes (AOPs) to obtain the preferable cavitation effect.
期刊介绍:
Journal of Environmental Informatics (JEI) is an international, peer-reviewed, and interdisciplinary publication designed to foster research innovation and discovery on basic science and information technology for addressing various environmental problems. The journal aims to motivate and enhance the integration of science and technology to help develop sustainable solutions that are consensus-oriented, risk-informed, scientifically-based and cost-effective. JEI serves researchers, educators and practitioners who are interested in theoretical and/or applied aspects of environmental science, regardless of disciplinary boundaries. The topics addressed by the journal include:
- Planning of energy, environmental and ecological management systems
- Simulation, optimization and Environmental decision support
- Environmental geomatics - GIS, RS and other spatial information technologies
- Informatics for environmental chemistry and biochemistry
- Environmental applications of functional materials
- Environmental phenomena at atomic, molecular and macromolecular scales
- Modeling of chemical, biological and environmental processes
- Modeling of biotechnological systems for enhanced pollution mitigation
- Computer graphics and visualization for environmental decision support
- Artificial intelligence and expert systems for environmental applications
- Environmental statistics and risk analysis
- Climate modeling, downscaling, impact assessment, and adaptation planning
- Other areas of environmental systems science and information technology.