滑坡涌浪传播过程的物理深度学习数值模拟

Wu, Yinghan, Shao, Kaixuan, Piccialli, Francesco, Mei, Gang
{"title":"滑坡涌浪传播过程的物理深度学习数值模拟","authors":"Wu, Yinghan, Shao, Kaixuan, Piccialli, Francesco, Mei, Gang","doi":"10.1186/s40323-022-00228-6","DOIUrl":null,"url":null,"abstract":"The landslide surge is a common secondary disaster of reservoir bank landslides, which can cause more serious damage than the landslide itself in many cases. With the development of large-scale scientific and engineering computing, many new techniques have been applied to the study of hydrodynamic problems to make up for the shortcomings of traditional methods. In this paper, we use the physics-informed neural network (PINN) to simulate the propagation process of surges caused by landslides. We study different characteristics of landslide surges by changing water depth and particle density. We find that: (1) the landslide surge propagation process simulation method based on the physics-informed neural network has good applicability, and the stages of landslide surge propagation can be well presented; (2) the depth of water influences the landslide surge propagation as the amplitude of the surge increases with deeper water; (3) the particle density of water influences the landslide surge propagation as the fluctuation of the surge is more obvious with larger particle density. Our study is helpful to understand the propagation process of landslide surges more clearly and provides new ideas for the follow-up study of this kind of complex fluid–structure interaction problem.","PeriodicalId":37424,"journal":{"name":"Advanced Modeling and Simulation in Engineering Sciences","volume":"30 7","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2022-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Numerical modeling of the propagation process of landslide surge using physics-informed deep learning\",\"authors\":\"Wu, Yinghan, Shao, Kaixuan, Piccialli, Francesco, Mei, Gang\",\"doi\":\"10.1186/s40323-022-00228-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The landslide surge is a common secondary disaster of reservoir bank landslides, which can cause more serious damage than the landslide itself in many cases. With the development of large-scale scientific and engineering computing, many new techniques have been applied to the study of hydrodynamic problems to make up for the shortcomings of traditional methods. In this paper, we use the physics-informed neural network (PINN) to simulate the propagation process of surges caused by landslides. We study different characteristics of landslide surges by changing water depth and particle density. We find that: (1) the landslide surge propagation process simulation method based on the physics-informed neural network has good applicability, and the stages of landslide surge propagation can be well presented; (2) the depth of water influences the landslide surge propagation as the amplitude of the surge increases with deeper water; (3) the particle density of water influences the landslide surge propagation as the fluctuation of the surge is more obvious with larger particle density. Our study is helpful to understand the propagation process of landslide surges more clearly and provides new ideas for the follow-up study of this kind of complex fluid–structure interaction problem.\",\"PeriodicalId\":37424,\"journal\":{\"name\":\"Advanced Modeling and Simulation in Engineering Sciences\",\"volume\":\"30 7\",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2022-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Modeling and Simulation in Engineering Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s40323-022-00228-6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Modeling and Simulation in Engineering Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s40323-022-00228-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 4

摘要

滑坡涌浪是库岸滑坡常见的次生灾害,在很多情况下造成的破坏比滑坡本身更为严重。随着大规模科学计算和工程计算的发展,许多新技术被应用于水动力问题的研究,以弥补传统方法的不足。本文采用物理信息神经网络(PINN)模拟了滑坡引起的浪涌的传播过程。通过改变水深和颗粒密度,研究了滑坡涌浪的不同特征。研究发现:(1)基于物理信息神经网络的滑坡涌浪传播过程模拟方法具有较好的适用性,能较好地呈现滑坡涌浪传播的各个阶段;(2)水深对滑坡涌浪传播有影响,涌浪振幅随水深的增加而增大;(3)水的颗粒密度影响滑坡涌浪的传播,颗粒密度越大,涌浪的波动越明显。本研究有助于更清晰地了解滑坡涌浪的传播过程,为后续研究此类复杂的流固耦合问题提供新的思路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Numerical modeling of the propagation process of landslide surge using physics-informed deep learning
The landslide surge is a common secondary disaster of reservoir bank landslides, which can cause more serious damage than the landslide itself in many cases. With the development of large-scale scientific and engineering computing, many new techniques have been applied to the study of hydrodynamic problems to make up for the shortcomings of traditional methods. In this paper, we use the physics-informed neural network (PINN) to simulate the propagation process of surges caused by landslides. We study different characteristics of landslide surges by changing water depth and particle density. We find that: (1) the landslide surge propagation process simulation method based on the physics-informed neural network has good applicability, and the stages of landslide surge propagation can be well presented; (2) the depth of water influences the landslide surge propagation as the amplitude of the surge increases with deeper water; (3) the particle density of water influences the landslide surge propagation as the fluctuation of the surge is more obvious with larger particle density. Our study is helpful to understand the propagation process of landslide surges more clearly and provides new ideas for the follow-up study of this kind of complex fluid–structure interaction problem.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Modeling and Simulation in Engineering Sciences
Advanced Modeling and Simulation in Engineering Sciences Engineering-Engineering (miscellaneous)
CiteScore
6.80
自引率
0.00%
发文量
22
审稿时长
30 weeks
期刊介绍: The research topics addressed by Advanced Modeling and Simulation in Engineering Sciences (AMSES) cover the vast domain of the advanced modeling and simulation of materials, processes and structures governed by the laws of mechanics. The emphasis is on advanced and innovative modeling approaches and numerical strategies. The main objective is to describe the actual physics of large mechanical systems with complicated geometries as accurately as possible using complex, highly nonlinear and coupled multiphysics and multiscale models, and then to carry out simulations with these complex models as rapidly as possible. In other words, this research revolves around efficient numerical modeling along with model verification and validation. Therefore, the corresponding papers deal with advanced modeling and simulation, efficient optimization, inverse analysis, data-driven computation and simulation-based control. These challenging issues require multidisciplinary efforts – particularly in modeling, numerical analysis and computer science – which are treated in this journal.
期刊最新文献
Discovering non-associated pressure-sensitive plasticity models with EUCLID. Application of graph neural networks to predict explosion-induced transient flow Role of physical structure on performance index of crossflow microchannel heat exchanger with regression analysis Enhanced prediction of thermomechanical systems using machine learning, PCA, and finite element simulation Peridynamic numerical investigation of asymmetric strain-controlled fatigue behaviour using the kinetic theory of fracture
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1