{"title":"提出了分块质点法与离散元法的耦合方案","authors":"Singer, Veronika, Sautter, Klaus B., Larese, Antonia, Wüchner, Roland, Bletzinger, Kai-Uwe","doi":"10.1186/s40323-022-00229-5","DOIUrl":null,"url":null,"abstract":"Mass-movement hazards involving fast and large soil deformation often include huge rocks or other significant obstacles increasing tremendously the risks for humans and infrastructures. Therefore, numerical investigations of such disasters are in high economic demand for prediction as well as for the design of countermeasures. Unfortunately, classical numerical approaches are not suitable for such challenging multiphysics problems. For this reason, in this work we explore the combination of the Material Point Method, able to simulate elasto-plastic continuum materials and the Discrete Element Method to accurately calculate the contact forces, in a coupled formulation. We propose a partitioned MPM-DEM coupling scheme, thus the solvers involved are treated as black-box solvers, whereas the communication of the involved sub-systems is shifted to the shared interface. This approach allows to freely choose the best suited solver for each model and to combine the advantages of both physics in a generalized manner. The examples validate the novel coupling scheme and show its applicability for the simulation of large strain flow events interacting with obstacles.","PeriodicalId":37424,"journal":{"name":"Advanced Modeling and Simulation in Engineering Sciences","volume":"29 24","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2022-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"A partitioned material point method and discrete element method coupling scheme\",\"authors\":\"Singer, Veronika, Sautter, Klaus B., Larese, Antonia, Wüchner, Roland, Bletzinger, Kai-Uwe\",\"doi\":\"10.1186/s40323-022-00229-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Mass-movement hazards involving fast and large soil deformation often include huge rocks or other significant obstacles increasing tremendously the risks for humans and infrastructures. Therefore, numerical investigations of such disasters are in high economic demand for prediction as well as for the design of countermeasures. Unfortunately, classical numerical approaches are not suitable for such challenging multiphysics problems. For this reason, in this work we explore the combination of the Material Point Method, able to simulate elasto-plastic continuum materials and the Discrete Element Method to accurately calculate the contact forces, in a coupled formulation. We propose a partitioned MPM-DEM coupling scheme, thus the solvers involved are treated as black-box solvers, whereas the communication of the involved sub-systems is shifted to the shared interface. This approach allows to freely choose the best suited solver for each model and to combine the advantages of both physics in a generalized manner. The examples validate the novel coupling scheme and show its applicability for the simulation of large strain flow events interacting with obstacles.\",\"PeriodicalId\":37424,\"journal\":{\"name\":\"Advanced Modeling and Simulation in Engineering Sciences\",\"volume\":\"29 24\",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2022-08-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Modeling and Simulation in Engineering Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s40323-022-00229-5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Modeling and Simulation in Engineering Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s40323-022-00229-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MECHANICS","Score":null,"Total":0}
A partitioned material point method and discrete element method coupling scheme
Mass-movement hazards involving fast and large soil deformation often include huge rocks or other significant obstacles increasing tremendously the risks for humans and infrastructures. Therefore, numerical investigations of such disasters are in high economic demand for prediction as well as for the design of countermeasures. Unfortunately, classical numerical approaches are not suitable for such challenging multiphysics problems. For this reason, in this work we explore the combination of the Material Point Method, able to simulate elasto-plastic continuum materials and the Discrete Element Method to accurately calculate the contact forces, in a coupled formulation. We propose a partitioned MPM-DEM coupling scheme, thus the solvers involved are treated as black-box solvers, whereas the communication of the involved sub-systems is shifted to the shared interface. This approach allows to freely choose the best suited solver for each model and to combine the advantages of both physics in a generalized manner. The examples validate the novel coupling scheme and show its applicability for the simulation of large strain flow events interacting with obstacles.
期刊介绍:
The research topics addressed by Advanced Modeling and Simulation in Engineering Sciences (AMSES) cover the vast domain of the advanced modeling and simulation of materials, processes and structures governed by the laws of mechanics. The emphasis is on advanced and innovative modeling approaches and numerical strategies. The main objective is to describe the actual physics of large mechanical systems with complicated geometries as accurately as possible using complex, highly nonlinear and coupled multiphysics and multiscale models, and then to carry out simulations with these complex models as rapidly as possible. In other words, this research revolves around efficient numerical modeling along with model verification and validation. Therefore, the corresponding papers deal with advanced modeling and simulation, efficient optimization, inverse analysis, data-driven computation and simulation-based control. These challenging issues require multidisciplinary efforts – particularly in modeling, numerical analysis and computer science – which are treated in this journal.