滑坡产生波的Navier-Stokes方程和浅水方程耦合解的拉格朗日-欧拉过程

Masó, Miguel, Franci, Alessandro, de-Pouplana, Ignasi, Cornejo, Alejandro, Oñate, Eugenio
{"title":"滑坡产生波的Navier-Stokes方程和浅水方程耦合解的拉格朗日-欧拉过程","authors":"Masó, Miguel, Franci, Alessandro, de-Pouplana, Ignasi, Cornejo, Alejandro, Oñate, Eugenio","doi":"10.1186/s40323-022-00225-9","DOIUrl":null,"url":null,"abstract":"This work presents a partitioned method for landslide-generated wave events. The proposed strategy combines a Lagrangian Navier Stokes multi-fluid solver with an Eulerian method based on the Boussinesq shallow water equations. The Lagrangian solver uses the Particle Finite Element Method to model the landslide runout, its impact against the water body and the consequent wave generation. The results of this fully-resolved analysis are stored at selected interfaces and then used as input for the shallow water solver to model the far-field wave propagation. This one-way coupling scheme reduces drastically the computational cost of the analyses while maintaining high accuracy in reproducing the key phenomena of the cascading natural hazard. Several numerical examples are presented to show the accuracy and robustness of the proposed coupling strategy and its applicability to large-scale landslide-generated wave events. The validation of the partitioned method is performed versus available results of other numerical methods, analytical solutions and experimental measures.","PeriodicalId":37424,"journal":{"name":"Advanced Modeling and Simulation in Engineering Sciences","volume":"29 22","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2022-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A Lagrangian–Eulerian procedure for the coupled solution of the Navier–Stokes and shallow water equations for landslide-generated waves\",\"authors\":\"Masó, Miguel, Franci, Alessandro, de-Pouplana, Ignasi, Cornejo, Alejandro, Oñate, Eugenio\",\"doi\":\"10.1186/s40323-022-00225-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work presents a partitioned method for landslide-generated wave events. The proposed strategy combines a Lagrangian Navier Stokes multi-fluid solver with an Eulerian method based on the Boussinesq shallow water equations. The Lagrangian solver uses the Particle Finite Element Method to model the landslide runout, its impact against the water body and the consequent wave generation. The results of this fully-resolved analysis are stored at selected interfaces and then used as input for the shallow water solver to model the far-field wave propagation. This one-way coupling scheme reduces drastically the computational cost of the analyses while maintaining high accuracy in reproducing the key phenomena of the cascading natural hazard. Several numerical examples are presented to show the accuracy and robustness of the proposed coupling strategy and its applicability to large-scale landslide-generated wave events. The validation of the partitioned method is performed versus available results of other numerical methods, analytical solutions and experimental measures.\",\"PeriodicalId\":37424,\"journal\":{\"name\":\"Advanced Modeling and Simulation in Engineering Sciences\",\"volume\":\"29 22\",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2022-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Modeling and Simulation in Engineering Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s40323-022-00225-9\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Modeling and Simulation in Engineering Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s40323-022-00225-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 2

摘要

本文提出了滑坡波事件的分区方法。该策略将拉格朗日Navier - Stokes多流体求解器与基于Boussinesq浅水方程的欧拉方法相结合。拉格朗日解算器采用粒子有限元法模拟滑坡跳动、对水体的冲击以及随之产生的波浪。这种完全解析的分析结果存储在选定的界面上,然后用作浅水求解器的输入,以模拟远场波的传播。这种单向耦合方案大大降低了分析的计算成本,同时保持了重现级联自然灾害关键现象的高精度。数值算例表明了所提出的耦合策略的准确性和鲁棒性,以及该策略对大规模滑坡波事件的适用性。对比其他数值方法、解析解和实验测量的结果,对划分方法进行了验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Lagrangian–Eulerian procedure for the coupled solution of the Navier–Stokes and shallow water equations for landslide-generated waves
This work presents a partitioned method for landslide-generated wave events. The proposed strategy combines a Lagrangian Navier Stokes multi-fluid solver with an Eulerian method based on the Boussinesq shallow water equations. The Lagrangian solver uses the Particle Finite Element Method to model the landslide runout, its impact against the water body and the consequent wave generation. The results of this fully-resolved analysis are stored at selected interfaces and then used as input for the shallow water solver to model the far-field wave propagation. This one-way coupling scheme reduces drastically the computational cost of the analyses while maintaining high accuracy in reproducing the key phenomena of the cascading natural hazard. Several numerical examples are presented to show the accuracy and robustness of the proposed coupling strategy and its applicability to large-scale landslide-generated wave events. The validation of the partitioned method is performed versus available results of other numerical methods, analytical solutions and experimental measures.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Modeling and Simulation in Engineering Sciences
Advanced Modeling and Simulation in Engineering Sciences Engineering-Engineering (miscellaneous)
CiteScore
6.80
自引率
0.00%
发文量
22
审稿时长
30 weeks
期刊介绍: The research topics addressed by Advanced Modeling and Simulation in Engineering Sciences (AMSES) cover the vast domain of the advanced modeling and simulation of materials, processes and structures governed by the laws of mechanics. The emphasis is on advanced and innovative modeling approaches and numerical strategies. The main objective is to describe the actual physics of large mechanical systems with complicated geometries as accurately as possible using complex, highly nonlinear and coupled multiphysics and multiscale models, and then to carry out simulations with these complex models as rapidly as possible. In other words, this research revolves around efficient numerical modeling along with model verification and validation. Therefore, the corresponding papers deal with advanced modeling and simulation, efficient optimization, inverse analysis, data-driven computation and simulation-based control. These challenging issues require multidisciplinary efforts – particularly in modeling, numerical analysis and computer science – which are treated in this journal.
期刊最新文献
Discovering non-associated pressure-sensitive plasticity models with EUCLID. Application of graph neural networks to predict explosion-induced transient flow Role of physical structure on performance index of crossflow microchannel heat exchanger with regression analysis Enhanced prediction of thermomechanical systems using machine learning, PCA, and finite element simulation Peridynamic numerical investigation of asymmetric strain-controlled fatigue behaviour using the kinetic theory of fracture
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1