{"title":"gnss -相机传感器融合完整性风险的粒子滤波框架","authors":"Adyasha Mohanty, Shubh Gupta, Grace Xingxin Gao","doi":"10.1002/navi.455","DOIUrl":null,"url":null,"abstract":"Adopting a joint approach toward state estimation and integrity monitoring results in unbiased integrity monitoring unlike traditional approaches. So far, a joint approach was used in particle RAIM (Gupta & Gao, 2019) for GNSS measurements only. In our work, we extend Particle RAIM to a GNSS-camera fused system for joint state estimation and integrity monitoring. To account for vision faults, we derived a probability distribution over position from camera images using map-matching. We formulated a Kullback-Leibler divergence (Kullback & Leibler, 1951) metric to assess the consistency of GNSS and camera measurements and mitigate faults during sensor fusion. Experimental validation on a real-world data set shows that our algorithm produces less than 11 m position error and the integrity risk over bounds the probability of HMI with 0.11 failure rate for an 8 m alert limit in an urban scenario.","PeriodicalId":501157,"journal":{"name":"NAVIGATION","volume":"53 21","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A particle-filtering framework for integrity risk of GNSS-camera sensor fusion\",\"authors\":\"Adyasha Mohanty, Shubh Gupta, Grace Xingxin Gao\",\"doi\":\"10.1002/navi.455\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Adopting a joint approach toward state estimation and integrity monitoring results in unbiased integrity monitoring unlike traditional approaches. So far, a joint approach was used in particle RAIM (Gupta & Gao, 2019) for GNSS measurements only. In our work, we extend Particle RAIM to a GNSS-camera fused system for joint state estimation and integrity monitoring. To account for vision faults, we derived a probability distribution over position from camera images using map-matching. We formulated a Kullback-Leibler divergence (Kullback & Leibler, 1951) metric to assess the consistency of GNSS and camera measurements and mitigate faults during sensor fusion. Experimental validation on a real-world data set shows that our algorithm produces less than 11 m position error and the integrity risk over bounds the probability of HMI with 0.11 failure rate for an 8 m alert limit in an urban scenario.\",\"PeriodicalId\":501157,\"journal\":{\"name\":\"NAVIGATION\",\"volume\":\"53 21\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"NAVIGATION\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/navi.455\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"NAVIGATION","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/navi.455","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A particle-filtering framework for integrity risk of GNSS-camera sensor fusion
Adopting a joint approach toward state estimation and integrity monitoring results in unbiased integrity monitoring unlike traditional approaches. So far, a joint approach was used in particle RAIM (Gupta & Gao, 2019) for GNSS measurements only. In our work, we extend Particle RAIM to a GNSS-camera fused system for joint state estimation and integrity monitoring. To account for vision faults, we derived a probability distribution over position from camera images using map-matching. We formulated a Kullback-Leibler divergence (Kullback & Leibler, 1951) metric to assess the consistency of GNSS and camera measurements and mitigate faults during sensor fusion. Experimental validation on a real-world data set shows that our algorithm produces less than 11 m position error and the integrity risk over bounds the probability of HMI with 0.11 failure rate for an 8 m alert limit in an urban scenario.