支持联合查询的无所有者分布式对称可搜索加密

IF 2.1 3区 计算机科学 Q3 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE ACM Transactions on Storage Pub Date : 2023-07-05 DOI:https://dl.acm.org/doi/10.1145/3607255
Qiuyun Tong, Xinghua Li, Yinbin Miao, Yunwei Wang, Ximeng Liu, Robert H. Deng
{"title":"支持联合查询的无所有者分布式对称可搜索加密","authors":"Qiuyun Tong, Xinghua Li, Yinbin Miao, Yunwei Wang, Ximeng Liu, Robert H. Deng","doi":"https://dl.acm.org/doi/10.1145/3607255","DOIUrl":null,"url":null,"abstract":"<p>Symmetric Searchable Encryption (SSE), as an ideal primitive, can ensure data privacy while supporting retrieval over encrypted data. However, existing multi-user SSE schemes require the data owner to share the secret key with all query users or always be online to generate search tokens. While there are some solutions to this problem, they have at least one weakness, such as non-supporting conjunctive query, result decryption assistance of the data owner, and unauthorized access. To solve the above issues, we propose an <underline>O</underline>wner-free <underline>Di</underline>stributed <underline>S</underline>ymmetric searchable encryption supporting <underline>C</underline>onjunctive query (ODiSC). Specifically, we first evaluate Learning-Parity-with-Noise weak Pseudorandom Function (LPN-wPRF) in dual-cloud architecture to generate search tokens with the data owner free from sharing key and being online. Then, we provide fine-grained conjunctive query in the distributed architecture using additive secret sharing and symmetric-key hidden vector encryption. Finally, formal security analysis and empirical performance evaluation demonstrate that ODiSC is adaptively simulation-secure and efficient.</p>","PeriodicalId":49113,"journal":{"name":"ACM Transactions on Storage","volume":"74 11","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2023-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Owner-Free Distributed Symmetric Searchable Encryption Supporting Conjunctive Queries\",\"authors\":\"Qiuyun Tong, Xinghua Li, Yinbin Miao, Yunwei Wang, Ximeng Liu, Robert H. Deng\",\"doi\":\"https://dl.acm.org/doi/10.1145/3607255\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Symmetric Searchable Encryption (SSE), as an ideal primitive, can ensure data privacy while supporting retrieval over encrypted data. However, existing multi-user SSE schemes require the data owner to share the secret key with all query users or always be online to generate search tokens. While there are some solutions to this problem, they have at least one weakness, such as non-supporting conjunctive query, result decryption assistance of the data owner, and unauthorized access. To solve the above issues, we propose an <underline>O</underline>wner-free <underline>Di</underline>stributed <underline>S</underline>ymmetric searchable encryption supporting <underline>C</underline>onjunctive query (ODiSC). Specifically, we first evaluate Learning-Parity-with-Noise weak Pseudorandom Function (LPN-wPRF) in dual-cloud architecture to generate search tokens with the data owner free from sharing key and being online. Then, we provide fine-grained conjunctive query in the distributed architecture using additive secret sharing and symmetric-key hidden vector encryption. Finally, formal security analysis and empirical performance evaluation demonstrate that ODiSC is adaptively simulation-secure and efficient.</p>\",\"PeriodicalId\":49113,\"journal\":{\"name\":\"ACM Transactions on Storage\",\"volume\":\"74 11\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2023-07-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Storage\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/https://dl.acm.org/doi/10.1145/3607255\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Storage","FirstCategoryId":"94","ListUrlMain":"https://doi.org/https://dl.acm.org/doi/10.1145/3607255","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

摘要

对称可搜索加密(SSE)作为一种理想的原语,可以在保证数据隐私的同时支持对加密数据的检索。然而,现有的多用户SSE方案要求数据所有者与所有查询用户共享密钥,或者始终在线以生成搜索令牌。虽然有一些解决方案可以解决这个问题,但它们至少有一个缺点,例如不支持联合查询、数据所有者的结果解密协助以及未经授权的访问。为了解决上述问题,我们提出了一种支持合取查询(ODiSC)的无所有者分布式对称可搜索加密。具体而言,我们首先评估了双云架构中的带噪声学习奇偶性弱伪随机函数(LPN-wPRF),以生成数据所有者不共享密钥且在线的搜索令牌。然后,我们在分布式架构中使用加性秘密共享和对称密钥隐藏向量加密提供细粒度的联合查询。最后,形式安全性分析和实证性能评价表明,ODiSC具有自适应仿真安全性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Owner-Free Distributed Symmetric Searchable Encryption Supporting Conjunctive Queries

Symmetric Searchable Encryption (SSE), as an ideal primitive, can ensure data privacy while supporting retrieval over encrypted data. However, existing multi-user SSE schemes require the data owner to share the secret key with all query users or always be online to generate search tokens. While there are some solutions to this problem, they have at least one weakness, such as non-supporting conjunctive query, result decryption assistance of the data owner, and unauthorized access. To solve the above issues, we propose an Owner-free Distributed Symmetric searchable encryption supporting Conjunctive query (ODiSC). Specifically, we first evaluate Learning-Parity-with-Noise weak Pseudorandom Function (LPN-wPRF) in dual-cloud architecture to generate search tokens with the data owner free from sharing key and being online. Then, we provide fine-grained conjunctive query in the distributed architecture using additive secret sharing and symmetric-key hidden vector encryption. Finally, formal security analysis and empirical performance evaluation demonstrate that ODiSC is adaptively simulation-secure and efficient.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACM Transactions on Storage
ACM Transactions on Storage COMPUTER SCIENCE, HARDWARE & ARCHITECTURE-COMPUTER SCIENCE, SOFTWARE ENGINEERING
CiteScore
4.20
自引率
5.90%
发文量
33
审稿时长
>12 weeks
期刊介绍: The ACM Transactions on Storage (TOS) is a new journal with an intent to publish original archival papers in the area of storage and closely related disciplines. Articles that appear in TOS will tend either to present new techniques and concepts or to report novel experiences and experiments with practical systems. Storage is a broad and multidisciplinary area that comprises of network protocols, resource management, data backup, replication, recovery, devices, security, and theory of data coding, densities, and low-power. Potential synergies among these fields are expected to open up new research directions.
期刊最新文献
LVMT: An Efficient Authenticated Storage for Blockchain The Design of Fast Delta Encoding for Delta Compression Based Storage Systems A Memory-Disaggregated Radix Tree Fastmove: A Comprehensive Study of On-Chip DMA and its Demonstration for Accelerating Data Movement in NVM-based Storage Systems FSDedup: Feature-Aware and Selective Deduplication for Improving Performance of Encrypted Non-Volatile Main Memory
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1