Qiuyun Tong, Xinghua Li, Yinbin Miao, Yunwei Wang, Ximeng Liu, Robert H. Deng
{"title":"支持联合查询的无所有者分布式对称可搜索加密","authors":"Qiuyun Tong, Xinghua Li, Yinbin Miao, Yunwei Wang, Ximeng Liu, Robert H. Deng","doi":"https://dl.acm.org/doi/10.1145/3607255","DOIUrl":null,"url":null,"abstract":"<p>Symmetric Searchable Encryption (SSE), as an ideal primitive, can ensure data privacy while supporting retrieval over encrypted data. However, existing multi-user SSE schemes require the data owner to share the secret key with all query users or always be online to generate search tokens. While there are some solutions to this problem, they have at least one weakness, such as non-supporting conjunctive query, result decryption assistance of the data owner, and unauthorized access. To solve the above issues, we propose an <underline>O</underline>wner-free <underline>Di</underline>stributed <underline>S</underline>ymmetric searchable encryption supporting <underline>C</underline>onjunctive query (ODiSC). Specifically, we first evaluate Learning-Parity-with-Noise weak Pseudorandom Function (LPN-wPRF) in dual-cloud architecture to generate search tokens with the data owner free from sharing key and being online. Then, we provide fine-grained conjunctive query in the distributed architecture using additive secret sharing and symmetric-key hidden vector encryption. Finally, formal security analysis and empirical performance evaluation demonstrate that ODiSC is adaptively simulation-secure and efficient.</p>","PeriodicalId":49113,"journal":{"name":"ACM Transactions on Storage","volume":"74 11","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2023-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Owner-Free Distributed Symmetric Searchable Encryption Supporting Conjunctive Queries\",\"authors\":\"Qiuyun Tong, Xinghua Li, Yinbin Miao, Yunwei Wang, Ximeng Liu, Robert H. Deng\",\"doi\":\"https://dl.acm.org/doi/10.1145/3607255\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Symmetric Searchable Encryption (SSE), as an ideal primitive, can ensure data privacy while supporting retrieval over encrypted data. However, existing multi-user SSE schemes require the data owner to share the secret key with all query users or always be online to generate search tokens. While there are some solutions to this problem, they have at least one weakness, such as non-supporting conjunctive query, result decryption assistance of the data owner, and unauthorized access. To solve the above issues, we propose an <underline>O</underline>wner-free <underline>Di</underline>stributed <underline>S</underline>ymmetric searchable encryption supporting <underline>C</underline>onjunctive query (ODiSC). Specifically, we first evaluate Learning-Parity-with-Noise weak Pseudorandom Function (LPN-wPRF) in dual-cloud architecture to generate search tokens with the data owner free from sharing key and being online. Then, we provide fine-grained conjunctive query in the distributed architecture using additive secret sharing and symmetric-key hidden vector encryption. Finally, formal security analysis and empirical performance evaluation demonstrate that ODiSC is adaptively simulation-secure and efficient.</p>\",\"PeriodicalId\":49113,\"journal\":{\"name\":\"ACM Transactions on Storage\",\"volume\":\"74 11\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2023-07-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Storage\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/https://dl.acm.org/doi/10.1145/3607255\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Storage","FirstCategoryId":"94","ListUrlMain":"https://doi.org/https://dl.acm.org/doi/10.1145/3607255","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
Symmetric Searchable Encryption (SSE), as an ideal primitive, can ensure data privacy while supporting retrieval over encrypted data. However, existing multi-user SSE schemes require the data owner to share the secret key with all query users or always be online to generate search tokens. While there are some solutions to this problem, they have at least one weakness, such as non-supporting conjunctive query, result decryption assistance of the data owner, and unauthorized access. To solve the above issues, we propose an Owner-free Distributed Symmetric searchable encryption supporting Conjunctive query (ODiSC). Specifically, we first evaluate Learning-Parity-with-Noise weak Pseudorandom Function (LPN-wPRF) in dual-cloud architecture to generate search tokens with the data owner free from sharing key and being online. Then, we provide fine-grained conjunctive query in the distributed architecture using additive secret sharing and symmetric-key hidden vector encryption. Finally, formal security analysis and empirical performance evaluation demonstrate that ODiSC is adaptively simulation-secure and efficient.
期刊介绍:
The ACM Transactions on Storage (TOS) is a new journal with an intent to publish original archival papers in the area of storage and closely related disciplines. Articles that appear in TOS will tend either to present new techniques and concepts or to report novel experiences and experiments with practical systems. Storage is a broad and multidisciplinary area that comprises of network protocols, resource management, data backup, replication, recovery, devices, security, and theory of data coding, densities, and low-power. Potential synergies among these fields are expected to open up new research directions.