Wen Xia, Lifeng Pu, Xiangyu Zou, Philip Shilane, Shiyi Li, Haijun Zhang, Xuan Wang
{"title":"用于高效重复数据删除后增量压缩的快速轻量级相似性检测设计","authors":"Wen Xia, Lifeng Pu, Xiangyu Zou, Philip Shilane, Shiyi Li, Haijun Zhang, Xuan Wang","doi":"https://dl.acm.org/doi/10.1145/3584663","DOIUrl":null,"url":null,"abstract":"<p>Post-deduplication delta compression is a data reduction technique that calculates and stores the differences of very similar but non-duplicate chunks in storage systems, which is able to achieve a very high compression ratio. However, the low throughput of widely used resemblance detection approaches (e.g., N-Transform) usually becomes the bottleneck of delta compression systems due to introducing high computational overhead. Generally, this overhead mainly consists of two parts: ① calculating the rolling hash byte by byte across data chunks and ② applying multiple transforms on all of the calculated rolling hash values.</p><p> In this article, we propose Odess, a fast and lightweight resemblance detection approach, that greatly reduces the computational overhead for resemblance detection while achieving high detection accuracy and a high compression ratio. Odess first utilizes a novel Subwindow-based Parallel Rolling (SWPR) hash method using Single Instruction Multiple Data [1] (SIMD) to accelerate calculation of rolling hashes (corresponding to the first part of the overhead). Odess then uses a novel Content-Defined Sampling method to generate a much smaller proxy hash set from the whole rolling hash set and quickly applies transforms on this small hash set for resemblance detection (corresponding to the second part of the overhead).</p><p>Evaluation results show that during the stage of resemblance detection, the Odess approach is ∼31.4× and ∼7.9× faster than the state-of-the-art N-Transform and Finesse (a recent variant of N-Transform [39]), respectively. When considering an end-to-end data reduction storage system, the Odess-based system’s throughput is about 3.20× and 1.41× higher than the N-Transform- and Finesse-based systems’ throughput, respectively, while maintaining the high compression ratio of N-Transform and achieving ∼1.22× higher compression ratio over Finesse.</p>","PeriodicalId":49113,"journal":{"name":"ACM Transactions on Storage","volume":"76 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2023-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Design of Fast and Lightweight Resemblance Detection for Efficient Post-Deduplication Delta Compression\",\"authors\":\"Wen Xia, Lifeng Pu, Xiangyu Zou, Philip Shilane, Shiyi Li, Haijun Zhang, Xuan Wang\",\"doi\":\"https://dl.acm.org/doi/10.1145/3584663\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Post-deduplication delta compression is a data reduction technique that calculates and stores the differences of very similar but non-duplicate chunks in storage systems, which is able to achieve a very high compression ratio. However, the low throughput of widely used resemblance detection approaches (e.g., N-Transform) usually becomes the bottleneck of delta compression systems due to introducing high computational overhead. Generally, this overhead mainly consists of two parts: ① calculating the rolling hash byte by byte across data chunks and ② applying multiple transforms on all of the calculated rolling hash values.</p><p> In this article, we propose Odess, a fast and lightweight resemblance detection approach, that greatly reduces the computational overhead for resemblance detection while achieving high detection accuracy and a high compression ratio. Odess first utilizes a novel Subwindow-based Parallel Rolling (SWPR) hash method using Single Instruction Multiple Data [1] (SIMD) to accelerate calculation of rolling hashes (corresponding to the first part of the overhead). Odess then uses a novel Content-Defined Sampling method to generate a much smaller proxy hash set from the whole rolling hash set and quickly applies transforms on this small hash set for resemblance detection (corresponding to the second part of the overhead).</p><p>Evaluation results show that during the stage of resemblance detection, the Odess approach is ∼31.4× and ∼7.9× faster than the state-of-the-art N-Transform and Finesse (a recent variant of N-Transform [39]), respectively. When considering an end-to-end data reduction storage system, the Odess-based system’s throughput is about 3.20× and 1.41× higher than the N-Transform- and Finesse-based systems’ throughput, respectively, while maintaining the high compression ratio of N-Transform and achieving ∼1.22× higher compression ratio over Finesse.</p>\",\"PeriodicalId\":49113,\"journal\":{\"name\":\"ACM Transactions on Storage\",\"volume\":\"76 1\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2023-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Storage\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/https://dl.acm.org/doi/10.1145/3584663\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Storage","FirstCategoryId":"94","ListUrlMain":"https://doi.org/https://dl.acm.org/doi/10.1145/3584663","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
The Design of Fast and Lightweight Resemblance Detection for Efficient Post-Deduplication Delta Compression
Post-deduplication delta compression is a data reduction technique that calculates and stores the differences of very similar but non-duplicate chunks in storage systems, which is able to achieve a very high compression ratio. However, the low throughput of widely used resemblance detection approaches (e.g., N-Transform) usually becomes the bottleneck of delta compression systems due to introducing high computational overhead. Generally, this overhead mainly consists of two parts: ① calculating the rolling hash byte by byte across data chunks and ② applying multiple transforms on all of the calculated rolling hash values.
In this article, we propose Odess, a fast and lightweight resemblance detection approach, that greatly reduces the computational overhead for resemblance detection while achieving high detection accuracy and a high compression ratio. Odess first utilizes a novel Subwindow-based Parallel Rolling (SWPR) hash method using Single Instruction Multiple Data [1] (SIMD) to accelerate calculation of rolling hashes (corresponding to the first part of the overhead). Odess then uses a novel Content-Defined Sampling method to generate a much smaller proxy hash set from the whole rolling hash set and quickly applies transforms on this small hash set for resemblance detection (corresponding to the second part of the overhead).
Evaluation results show that during the stage of resemblance detection, the Odess approach is ∼31.4× and ∼7.9× faster than the state-of-the-art N-Transform and Finesse (a recent variant of N-Transform [39]), respectively. When considering an end-to-end data reduction storage system, the Odess-based system’s throughput is about 3.20× and 1.41× higher than the N-Transform- and Finesse-based systems’ throughput, respectively, while maintaining the high compression ratio of N-Transform and achieving ∼1.22× higher compression ratio over Finesse.
期刊介绍:
The ACM Transactions on Storage (TOS) is a new journal with an intent to publish original archival papers in the area of storage and closely related disciplines. Articles that appear in TOS will tend either to present new techniques and concepts or to report novel experiences and experiments with practical systems. Storage is a broad and multidisciplinary area that comprises of network protocols, resource management, data backup, replication, recovery, devices, security, and theory of data coding, densities, and low-power. Potential synergies among these fields are expected to open up new research directions.