{"title":"作为浮游生物/寄生虫相互作用模型的卵菌尾盘藻和尾盘硅藻的双重培养","authors":"Anthony Buaya, Alexandra Kraberg, Marco Thines","doi":"10.1186/s10152-019-0523-0","DOIUrl":null,"url":null,"abstract":"Diatoms are thought to provide about 40% of total global photosynthesis and diatoms of the genus Coscinodiscus are an important, sometimes dominant, cosmopolitan component of the marine diatom community. The oomycete parasitoid Lagenisma coscinodisci is widespread in the northern hemisphere on its hosts in the genus Coscinodiscus. Because of its potential ecological importance, it would be a suitable pathogen model to investigate plankton/parasite interactions, but the species cannot be cultivated on media without its host, so far. Thus, it was the aim of this study to explore the potential of dual culture of host and pathogen in the laboratory and to optimise cultivation to ensure a long-term cultivation of the pathogen. Here, we report successful cultivation of a single spore strain of L. coscinodisci (Isla), on several Coscinodiscus species and strains, as well as the establishment of a cultivation routine with Coscinodiscus granii (CGS1 and CG36), which enabled us to maintain the single spore strain for more than 3 years in 6 cm Petri dishes and 10 ml tissue culture flasks. This opens up the opportunity to study the processes and mechanism in plankton/parasitoid interactions under controlled conditions.","PeriodicalId":55063,"journal":{"name":"Helgoland Marine Research","volume":"61 3","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2019-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":"{\"title\":\"Dual culture of the oomycete Lagenisma coscinodisci Drebes and Coscinodiscus diatoms as a model for plankton/parasite interactions\",\"authors\":\"Anthony Buaya, Alexandra Kraberg, Marco Thines\",\"doi\":\"10.1186/s10152-019-0523-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Diatoms are thought to provide about 40% of total global photosynthesis and diatoms of the genus Coscinodiscus are an important, sometimes dominant, cosmopolitan component of the marine diatom community. The oomycete parasitoid Lagenisma coscinodisci is widespread in the northern hemisphere on its hosts in the genus Coscinodiscus. Because of its potential ecological importance, it would be a suitable pathogen model to investigate plankton/parasite interactions, but the species cannot be cultivated on media without its host, so far. Thus, it was the aim of this study to explore the potential of dual culture of host and pathogen in the laboratory and to optimise cultivation to ensure a long-term cultivation of the pathogen. Here, we report successful cultivation of a single spore strain of L. coscinodisci (Isla), on several Coscinodiscus species and strains, as well as the establishment of a cultivation routine with Coscinodiscus granii (CGS1 and CG36), which enabled us to maintain the single spore strain for more than 3 years in 6 cm Petri dishes and 10 ml tissue culture flasks. This opens up the opportunity to study the processes and mechanism in plankton/parasitoid interactions under controlled conditions.\",\"PeriodicalId\":55063,\"journal\":{\"name\":\"Helgoland Marine Research\",\"volume\":\"61 3\",\"pages\":\"1-6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-04-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"22\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Helgoland Marine Research\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1186/s10152-019-0523-0\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Agricultural and Biological Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Helgoland Marine Research","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1186/s10152-019-0523-0","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
Dual culture of the oomycete Lagenisma coscinodisci Drebes and Coscinodiscus diatoms as a model for plankton/parasite interactions
Diatoms are thought to provide about 40% of total global photosynthesis and diatoms of the genus Coscinodiscus are an important, sometimes dominant, cosmopolitan component of the marine diatom community. The oomycete parasitoid Lagenisma coscinodisci is widespread in the northern hemisphere on its hosts in the genus Coscinodiscus. Because of its potential ecological importance, it would be a suitable pathogen model to investigate plankton/parasite interactions, but the species cannot be cultivated on media without its host, so far. Thus, it was the aim of this study to explore the potential of dual culture of host and pathogen in the laboratory and to optimise cultivation to ensure a long-term cultivation of the pathogen. Here, we report successful cultivation of a single spore strain of L. coscinodisci (Isla), on several Coscinodiscus species and strains, as well as the establishment of a cultivation routine with Coscinodiscus granii (CGS1 and CG36), which enabled us to maintain the single spore strain for more than 3 years in 6 cm Petri dishes and 10 ml tissue culture flasks. This opens up the opportunity to study the processes and mechanism in plankton/parasitoid interactions under controlled conditions.
期刊介绍:
Helgoland Marine Research is an open access, peer reviewed journal, publishing original research as well as reviews on all aspects of marine and brackish water ecosystems, with a focus on how organisms survive in, and interact with, their environment.
The aim of Helgoland Marine Research is to publish work with a regional focus, but with clear global implications, or vice versa; research with global emphasis and regional ramifications. We are particularly interested in contributions that further our general understanding of how marine ecosystems work, and that concentrate on species’ interactions.