Aomin Huang, Cheng Zhang, Zezhou Li, Haoren Wang, Mingjie Xu, Chaoyi Zhu, Xin Wang, Marc A. Meyers, Enrique J. Lavernia
{"title":"fenical基高熵合金的动态力学性能:通过微带和马氏体相变增强","authors":"Aomin Huang, Cheng Zhang, Zezhou Li, Haoren Wang, Mingjie Xu, Chaoyi Zhu, Xin Wang, Marc A. Meyers, Enrique J. Lavernia","doi":"10.1016/j.mtadv.2023.100439","DOIUrl":null,"url":null,"abstract":"<p>The non-equiatomic FeNiCoAlTaB high-entropy alloy exhibits outstanding quasi-static mechanical properties. Here, we investigate the microstructural evolution and mechanical response of this alloy subjected to dynamic loading, which has not been done before. A novel strategy combining extensive microbanding and martensitic transformation improves the resistance to the plastic instability by deterring the formation of adiabatic shear bands, that only occur beyond a critical shear strain larger than 4. The aged alloy, with grain sizes up to 400 μm, exhibits a dynamic yield stress over 1300 MPa with good deformability in this regime. This investigation sheds light on potential strategies for the enhancement of dynamic mechanical properties of structural materials through the use of a stress-induced martensitic transformation.</p>","PeriodicalId":48495,"journal":{"name":"Materials Today Advances","volume":"18 2","pages":""},"PeriodicalIF":8.1000,"publicationDate":"2023-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamic mechanical performance of FeNiCoAl-based high-entropy alloy: Enhancement via microbands and martensitic transformation\",\"authors\":\"Aomin Huang, Cheng Zhang, Zezhou Li, Haoren Wang, Mingjie Xu, Chaoyi Zhu, Xin Wang, Marc A. Meyers, Enrique J. Lavernia\",\"doi\":\"10.1016/j.mtadv.2023.100439\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The non-equiatomic FeNiCoAlTaB high-entropy alloy exhibits outstanding quasi-static mechanical properties. Here, we investigate the microstructural evolution and mechanical response of this alloy subjected to dynamic loading, which has not been done before. A novel strategy combining extensive microbanding and martensitic transformation improves the resistance to the plastic instability by deterring the formation of adiabatic shear bands, that only occur beyond a critical shear strain larger than 4. The aged alloy, with grain sizes up to 400 μm, exhibits a dynamic yield stress over 1300 MPa with good deformability in this regime. This investigation sheds light on potential strategies for the enhancement of dynamic mechanical properties of structural materials through the use of a stress-induced martensitic transformation.</p>\",\"PeriodicalId\":48495,\"journal\":{\"name\":\"Materials Today Advances\",\"volume\":\"18 2\",\"pages\":\"\"},\"PeriodicalIF\":8.1000,\"publicationDate\":\"2023-11-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Today Advances\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1016/j.mtadv.2023.100439\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Advances","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.mtadv.2023.100439","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Dynamic mechanical performance of FeNiCoAl-based high-entropy alloy: Enhancement via microbands and martensitic transformation
The non-equiatomic FeNiCoAlTaB high-entropy alloy exhibits outstanding quasi-static mechanical properties. Here, we investigate the microstructural evolution and mechanical response of this alloy subjected to dynamic loading, which has not been done before. A novel strategy combining extensive microbanding and martensitic transformation improves the resistance to the plastic instability by deterring the formation of adiabatic shear bands, that only occur beyond a critical shear strain larger than 4. The aged alloy, with grain sizes up to 400 μm, exhibits a dynamic yield stress over 1300 MPa with good deformability in this regime. This investigation sheds light on potential strategies for the enhancement of dynamic mechanical properties of structural materials through the use of a stress-induced martensitic transformation.
期刊介绍:
Materials Today Advances is a multi-disciplinary, open access journal that aims to connect different communities within materials science. It covers all aspects of materials science and related disciplines, including fundamental and applied research. The focus is on studies with broad impact that can cross traditional subject boundaries. The journal welcomes the submissions of articles at the forefront of materials science, advancing the field. It is part of the Materials Today family and offers authors rigorous peer review, rapid decisions, and high visibility.